J/AJ/152/40   Spectroscopy of 341 bright A- and B-type stars  (Gullikson+, 2016)

The close companion mass-ratio distribution of intermediate-mass stars. Gullikson K., Kraus A., Dodson-Robinson S. <Astron. J., 152, 40 (2016)> =2016AJ....152...40G 2016AJ....152...40G (SIMBAD/NED BibCode)
ADC_Keywords: Binaries, spectroscopic ; Stars, bright ; Stars, early-type ; Stars, A-type ; Stars, B-type ; Spectroscopy ; Stars, masses ; Effective temperatures ; Stars, ages ; Abundances, [Fe/H] ; Rotational velocities ; Photometry, infrared Keywords: binaries: spectroscopic - stars: early-type - stars: formation - stars: statistics Abstract: Binary stars and higher-order multiple systems are a ubiquitous outcome of star formation, especially as the system mass increases. The companion mass-ratio distribution is a unique probe into the conditions of the collapsing cloud core and circumstellar disk(s) of the binary fragments. Inside a∼1000AU the disks from the two forming stars can interact, and additionally companions can form directly through disk fragmentation. We should, therefore, expect the mass-ratio distribution of close companions (a≲100AU) to differ from that of wide companions. This prediction is difficult to test using traditional methods, in particular, with intermediate-mass primary stars, for a variety of observational reasons. We present the results of a survey searching for companions to A- and B-type stars using the direct spectral detection method, which is sensitive to late-type companions within ∼1'' of the primary and which has no inner working angle. We estimate the temperatures and surface gravity of most of the 341 sample stars and derive their masses and ages. We additionally estimate the temperatures and masses of the 64 companions we find, 23 of which are new detections. We find that the mass-ratio distribution for our sample has a maximum near q∼0.3. Our mass-ratio distribution has a very different form than in previous works, where it is usually well-described by a power law, and indicates that close companions to intermediate-mass stars experience significantly different accretion histories or formation mechanisms than wide companions. Description: The sample is given in Table1. We use several high spectral resolution, cross-dispersed echelle spectrographs for this survey. We use the CHIRON spectrograph on the 1.5m telescope at Cerro Tololo Inter-American Observatory (CTIO) for most southern targets. This spectrograph is an R=λ/Δλ=80000 spectrograph with wavelength coverage from 450-850nm, and is fed by a 2.7'' optical fiber. For the northern targets, we use a combination of the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope (HET), and the Tull coude spectrograph (TS23) and Immersion Grating Infrared Spectrograph (IGRINS), both on the 2.7m Harlan J. Smith Telescope. All three northern instruments are at McDonald Observatory. For the HRS, we use the R=60000 setting with a 2'' fiber, and with wavelength coverage from 410-780nm. For the TS23 spectrograph, we use a 1.2'' slit in combination with the E2 echelle grating (53 grooves/mm, blaze angle 65°), yielding a resolving power of R=60000 and a wavelength coverage from 375-1020nm. IGRINS has a single setting with R=40000. It has complete wavelength coverage from 1475-2480nm, except in the telluric water band from 1810-1930nm. We give the spectroscopic observation log in Table2. As part of the follow-up effort, we used the NIRI instrument behind the Altair adaptive optics system on the Gemini North Telescope. For each star listed in Table3, we obtained 25 images in five dithering positions. We used the K-continuum band centered on 2.2718µm and a variety of exposure times and dates (listed in Table3). We list the companion detections in Table4. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 107 340 Sample properties table2.dat 36 499 Spectroscopic observation log table3.dat 96 17 *NIRI observation log table4.dat 72 64 Companion detections -------------------------------------------------------------------------------- Note on table3.dat: The NIRI instrument behind the Altair adaptive optics system on the Gemini North Telescope. -------------------------------------------------------------------------------- See also: B/sb9 : SB9: 9th Catalogue of Spectroscopic Binary Orbits (Pourbaix+ 2004-2014) B/wds : The Washington Visual Double Star Catalog (Mason+ 2001-2014) I/311 : Hipparcos, the New Reduction (van Leeuwen, 2007) J/ApJ/804/146 : Atmospheric parameters for nearby B-F stars (David+, 2015) J/MNRAS/437/1216 : VAST Survey. A-type stars multiplicity (De Rosa+, 2014) J/A+A/537/A120 : Rotational velocities of A-type stars. IV. (Zorec+, 2012) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Star name 13- 18 A6 --- SpT Spectral type (1) 20- 21 I2 h RAh Hour of Right Ascension (J2000) (1) 23- 24 I2 min RAm Minute of Right Ascension (J2000) 26- 32 F7.4 s RAs Second of Right Ascension (J2000) 34 A1 --- DE- Sign of the Declination (J2000) (1) 35- 36 I2 deg DEd Degree of Declination (J2000) 38- 39 I2 arcmin DEm Arcminute of Declination (J2000) 41- 46 F6.3 arcsec DEs Arcsecond of Declination (J2000) 48- 52 F5.3 mag Vmag [2/6]? The V-band magnitude (1) 54- 58 F5.2 mas plx [0.72/68.92]? Parallax (1) 60- 64 I5 K Teff [7594/26000]? Stellar effective temperature (2) 66- 69 I4 K e_Teff [258/2000]? Uncertainty in Teff 71- 73 F3.1 [cm/s2] logg [2.7/4.5]? Log surface gravity (2) 75- 78 F4.2 [cm/s2] e_logg [0.14/0.25]? Uncertainty in logg 80- 82 F3.1 Msun Mass [1.6/9.6]? Mass (2) 84- 87 F4.2 Msun E_Mass [0.06/0.77]? Upper uncertainty in Mass 89- 92 F4.2 Msun e_Mass [0.06/0.72]? Lower uncertainty in Mass 94- 97 I4 Myr Age [5/1064]? Age (2) 99-101 I3 Myr E_Age [3/807]? Upper uncertainty in Age 103-105 I3 Myr e_Age [1/412]? Low uncertainty in Age 107 I1 --- r_Age [1/2]? Reference for Teff, logg, Mass, and Age (1, or 2=this study) (3) -------------------------------------------------------------------------------- Note (1): From the SIMBAD database. The spectral type given is that of the brightest star if part of a known multiple system. Note (2): Discussed in Section 4. Note (3): The reference codes are: 1 = David & Hillenbrand 2015 (Cat. J/ApJ/804/146); 2 = This study. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Star name 13- 19 F7.2 d JD [6298.78/7288.82] Julian Date (JD-2450000) 21- 26 A6 --- Inst Spectroscopic instrument used (1) 28- 31 I4 s Exp [22/7386] Exposure time 33- 36 I4 --- S/N [20/2520] Spectroscopic signal to noise per pixel (2) -------------------------------------------------------------------------------- Note (1): The instruments used are: CHIRON = CHIRON spectrograph on the 1.5m telescope at Cerro Tololo Inter-American Observatory (CTIO); HRS = High Resolution Spectrograph on the Hobby Eberly Telescope (HET); IGRINS = Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m Harlan J. Smith Telescope; TS23 = Tull coude spectrograph on the 2.7m Harlan J. Smith Telescope. Note (2): We calculate the S/N for the optical instruments (CHIRON, TS23, and HRS) as the median of the extracted flux divided by its uncertainty for each pixel from the echelle order nearest 675nm. For the IGRINS instrument, we calculate the S/N from the order nearest 2200nm. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Star name 12- 15 F4.2 mag Kmag [4.4/6.5] The K band magnitude 17 A1 --- f_Kmag Source of K magnitude (S=SIMBAD, or T=estimated from the spectral type of the star and its V-band magnitude) 19- 28 A10 "Y:M:D" Date Gemini/NIRI observation date (1) 30- 35 A6 --- Exp Exposure sequence 37- 42 F6.4 arcsec Sep [0.16/3.68]? Separation ρ 44- 49 F6.4 arcsec e_Sep [0.0007/0.003]? Uncertainty in Sep 51- 56 F6.2 deg PA [14.1/346.8]? Position angle θ 58- 61 F4.2 deg e_PA [0.02/0.92]? Uncertainty in PA 63- 66 F4.2 mag dKcmag [1.77/3.9]? The Δ K-continuum band magnitude (2) 68- 71 F4.2 mag e_dKcmag [0.01/0.4]? Uncertainty in dKcmag 73- 75 F3.1 Msun Mass2 [0.7/1.5]? Mass of secondary 77- 80 F4.2 Msun E_Mass2 [0.14/0.39]? Upper uncertainty in Mass2 82- 85 F4.2 Msun e_Mass2 [0.1/0.28]? Lower uncertainty in Mass2 87- 91 F5.1 AU a [25.1/467.7]? Separation, in astronomical units 93- 96 F4.2 AU e_a [0.16/0.81]? Uncertainty in a -------------------------------------------------------------------------------- Note (1): We used the NIRI instrument behind the Altair adaptive optics system on the Gemini North Telescope. Note (2): We used the K-continuum band centered on 2.2718µm. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Star Name 12- 16 A5 --- Comp Component (AB, AB?, AC, Aa,Ab, or Ba,Bb) 18 A1 --- f_Comp [d] Newly discovered companion (d=true) 20 I1 --- Nobs [1/3] Number of observations (1, 2, or 3) 22- 24 A3 --- Used Used in analysis (yes or no) 26- 30 I5 K Teff [3647/16000] Companion surface effective temperature 32- 35 I4 K e_Teff [85/1000] Uncertainty in Teff 37- 39 I3 km/s vsini [1/120] Companion projected rotational velocity 41- 44 F4.1 [-] [Fe/H] [-0.5/0.5] Companion metallicity 46- 48 F3.1 Msun MassI [0.5/4.3] Companion mass from isochrones 50- 53 F4.2 Msun E_MassI [0.02/0.47] Upper uncertainty in MassI 55- 58 F4.2 Msun e_MassI [0.02/0.43] Lower uncertainty in MassI 60- 62 F3.1 Msun MassS [0.5/4.7] Companion mass from Spectral type 64- 67 F4.2 Msun E_MassS [0.01/0.76] Upper uncertainty in MassS 69- 72 F4.2 Msun e_MassS [0.01/0.67] Lower uncertainty in MassS -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS]; Sylvain Guehenneux [CDS] 15-Sep-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line