J/AJ/153/21 Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017)
Abundances in the local region. II. F, G, and K dwarfs and subgiants.
Luck R.E.
<Astron. J., 153, 21-21 (2017)>
=2017AJ....153...21L 2017AJ....153...21L (SIMBAD/NED BibCode)
ADC_Keywords: Stars, F-type ; Stars, G-type ; Stars, K-type ; Stars, dwarfs ;
Abundances ; Stars, masses ; Stars, ages ; Effective temperatures
Keywords: Galaxy: abundances - stars: abundances - stars: evolution -
stars: fundamental parameters
Abstract:
Parameters and abundances have been derived for 1002 stars of spectral
types F, G, and K, and luminosity classes IV and V. After culling the
sample for rotational velocity and effective temperature, 867 stars
remain for discussion. Twenty-eight elements are considered in the
analysis. The α, iron-peak, and Period 5 transition metal
abundances for these stars show a modest enhancement over solar
averaging about 0.05dex. The lanthanides are more abundant, averaging
about +0.2dex over solar. The question is: Are these stars enhanced,
or is the Sun somewhat metal-poor relative to these stars? The
consistency of the abundances derived here supports an argument for
the latter view. Lithium, carbon, and oxygen abundances have been
derived. The stars show the usual lithium astration as a function of
mass/temperature. There are more than 100 planet-hosts in the sample,
and there is no discernible difference in their lithium content,
relative to the remaining stars. The carbon and oxygen abundances show
the well-known trend of decreasing [x/Fe] ratio with increasing
[Fe/H].
Description:
The McDonald Observatory 2.1m Telescope and Sandiford Cassegrain
Echelle Spectrograph provided much of the observational data for this
study. High-resolution spectra were obtained during numerous observing
runs, from 1996 to 2010. The spectra cover a continuous wavelength
range from about 484 to 700nm, with a resolving power of about 60000.
The wavelength range used demands two separate observations--one
centered at about 520nm, and the other at about 630nm. Typical S/N
values per pixel for the spectra are more than 150.
Spectra of 57 dwarfs were obtained using the Hobby-Eberly telescope
and High-Resolution Spectrograph. The spectra have a resolution of
30000, spanning the wavelength range of 400 to 785nm. They also have
very high signal-to-noise ratios, >300 per resolution element in
numerous cases.
The last set of spectra were obtained from the ELODIE Archive
(Moultaka et al. 2004PASP..116..693M 2004PASP..116..693M). These spectra are fully
processed, including order co-addition, and have a continuous
wavelength span of 400 to 680nm and a resolution of 42000. The ELODIE
spectra utilized here all have S/N>75 per pixel.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 106 1002 Program stars
table2.dat 109 1002 Temperature, luminosity, mass, age, and gravity
table3.dat 106 1041 Parameter and iron data
table4.dat 185 1041 Z>10 abundances for mass-derived gravities
table5.dat 94 1041 Lithium, carbon, and oxygen data
table7.dat 538 1041 [x/H] detail for Z>10: physical parameters
--------------------------------------------------------------------------------
See also:
I/274 : Catalog of Components of Double & Multiple stars (Dommanget+ 2002)
I/239 : The Hipparcos and Tycho Catalogues (ESA 1997)
J/AJ/150/88 : Abundances in local region. I. G and K giants (Luck, 2015)
J/A+A/562/A71 : Abundances of solar neighbourhood dwarfs (Bensby+, 2014)
J/AJ/147/137 : Atmospheric parameters in luminous stars (Luck, 2014)
J/AJ/142/136 : Spectroscopy of Cepheids. l=30-250° (Luck+, 2011)
J/AJ/133/2464 : Parameters and abundances of nearby giants (Luck+, 2007)
J/AJ/129/1063 : Abundances of stars within 15pc of the Sun (Luck+, 2005)
J/MNRAS/349/757 : Masses, ages and metallicities of F-G dwarfs (Lambert+, 2004)
J/A+AS/106/275 : Theoretical isochrones (Bertelli+ 1994)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Name Name of the primary star
20- 26 A7 --- HD H. Draper identifier (1)
28- 33 I6 --- HIP ? Hipparcos catalogue identifier (Cat. I/239) (1)
35- 38 I4 --- HR ? The Bright Star Catalogue identifier (1)
40- 50 A11 --- CCDM Identifier in the Catalog of Double and Multiple
Stars (Dommanget et al. 2002, Cat. I/274) (1)
51- 52 A2 --- m_CCDM CCDM component (either A, AB, AD, B, C, or CD)
54- 68 A15 --- SpT Spectral Type (1)
70- 75 F6.2 mas plx [4.2/311]? Parallax (1)
77- 81 F5.2 mas e_plx [0.1/21.6]? Uncertainty in plx (1)
83- 87 F5.2 mag Vmag [0.3/10.9]? Johnson V band apparent magnitude (1)
89- 93 F5.1 pc Dist [3.2/234.2]? Distance
95- 98 F4.2 mag E(B-V) [0/0.03]? B-V color excess (2)
100-104 F5.2 mag VMag [0.75/11.9]? Johnson V band absolute magnitude
106 A1 --- Host [H] Planet host status (H=known host) (3)
--------------------------------------------------------------------------------
Note (1): Values taken from Simbad.
Note (2): Computed from the extinction method of Hakkila et al.
1997AJ....114.2043H 1997AJ....114.2043H. Except for d<75pc, the extinction is set to 0.
Note (3): Source is The Extrasolar Planets Encyclopedia (Exoplanets team, 2016,
http://exoplanet.eu/).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Name Name of the primary star
20 A1 --- Sce [EHS] Source for spectroscopic material
(E=ELODIE, H=HET, or S=Sandiford) (G1)
22- 25 I4 K Teff [3644/7671]? Effective Temperature
27- 29 I3 K e_Teff [2/333]? Standard deviation of the effective
temperature
31- 32 I2 --- o_Teff [1/12]? Number of colors used in the
effective temperature determination
34- 38 F5.2 [Lsun] logL [-2.42/1.61] Luminosity (logL/L☉)
40- 43 F4.2 Msun B1Mass [0.6/2.05]? Mass, determined from the Bertelli
et al. 1994 (Cat. J/A+AS/106/275) isochrones
45- 49 F5.2 Gyr B1Age [0.63/12.02]? Age, determined from the Bertelli
et al. 1994 (Cat. J/A+AS/106/275) isochrones
51- 54 F4.2 Msun DMass [0.48/2.08]? Mass, determined from the Dotter et
al. 2008ApJS..178...89D 2008ApJS..178...89D isochrones
56- 60 F5.2 Gyr DAge [0.55/12.5]? Age, determined from the Dotter et
al. 2008ApJS..178...89D 2008ApJS..178...89D isochrones
62- 65 F4.2 Msun YMass [0.39/2.16]? Mass, determined from the Demarque
et al. 2004ApJS..155..667D 2004ApJS..155..667D isochrones
67- 71 F5.2 Gyr YAge [0.6/12]? Age, determined from the Demarque et
al. 2004ApJS..155..667D 2004ApJS..155..667D isochrones
73- 76 F4.2 Msun B2Mass [0.5/2.2]? Mass, determined from the BaSTI Team
(2016, BaSTI Ver. 5.0.1:
http://basti.oa-teramo.inaf.it/) isochrones (1)
78- 82 F5.2 Gyr B2Age [0.6/12.5]? Age, determined from the BaSTI Team
(2016, BaSTI Ver. 5.0.1:
http://basti.oa-teramo.inaf.it/) isochrones (1)
84- 87 F4.2 Msun <Mass> [0.39/2.1]? Average mass
89- 92 F4.2 Msun MRange [0/0.75]? Range in mass determination
94- 98 F5.2 Gyr <Age> [0.58/12.5]? Average age
100-104 F5.2 Gyr ARange [0/11.45]? Range in age determination
106-109 F4.2 [cm/s2] logg [3.08/6.88] Log surface gravity (2)
--------------------------------------------------------------------------------
Note (1): BaSTI Team 2016 - BaSTI Ver. 5.0.1: http://basti.oa-teramo.inaf.it/
Note (2): Surface acceleration, computed from average mass, temperature, and
luminosity.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Name Name of the primary star
20 A1 --- Sce [EHS] Source for spectroscopic material
(E=ELODIE, H=HET, or S=Sandiford) (G1)
22- 25 I4 K Teff1 [3644/7671] Effective temperature (1)
27- 30 F4.2 cm/s2 logg1 [3.08/5] Log surface acceleration (gravity),
computed from average mass, temperature, and
luminosity (1)
32- 35 F4.2 km/s Vt1 [0.15/5.7] Microturbulent velocity (Vt) (1)
37- 40 F4.2 [-] FeI1 [5.15/8.5] Total iron abundance, computed from
neutral iron lines (the solar iron abundance
is 7.47) (1)
42- 45 F4.2 [-] e_FeI1 [0.04/0.6] Standard deviation of the neutral
iron line abundances (σ) (1)
47- 49 I3 --- o_FeI1 [3/639] Number of neutral iron lines used (1)
51- 55 F5.2 [-] FeII1 [5.2/11.4] Total iron abundance, computed from
first ionization stage iron lines (the solar
iron abundance is 7.47) (1)
57- 60 F4.2 [-] e_FeII1 [0/1.63] Standard deviation of the first
ionization stage iron line abundances (1)
62- 63 I2 --- o_FeII1 [1/90] Number of first ionization stage iron
lines used (1)
65- 68 I4 K Teff2 [3644/7671] Effective temperature (2)
70- 73 F4.2 cm/s2 logg2 [3/5] Log surface acceleration (gravity),
computed from ionization balance (2)
75- 78 F4.2 km/s Vt2 [0.1/5.65] Microturbulent velocity (2)
80- 83 F4.2 [-] FeI2 [5.15/8.3] Total iron abundance, computed from
neutral iron lines (the solar iron abundance
is 7.47) (2)
85- 88 F4.2 [-] e_FeI2 [0.04/0.6] Standard deviation of the neutral
iron line abundances (2)
90- 92 I3 --- o_FeI2 [3/639] Number of neutral iron lines used (2)
94- 98 F5.2 [-] FeII2 [5.15/11.4] Total iron abundance, computed
from first ionization stage iron lines (the
solar iron abundance is 7.47) (2)
100-103 F4.2 [-] e_FeII2 [0/1.63] Standard deviation of the first
ionization stage iron line abundances (2)
105-106 I2 --- o_FeII2 [1/90] Number of first ionization stage iron
lines used (2)
--------------------------------------------------------------------------------
Note (1): Mass-derived gravity results, effective temperature is the same in
both cases.
Note (2): Ionization balance gravity results, effective temperature is the
same in both cases.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Name Name of the primary star
20 A1 --- Sce [EHS] Source for spectroscopic material
(E=ELODIE, H=HET, or S=Sandiford) (G1)
22- 25 I4 K Teff [3644/7671] Effective temperature
27- 30 F4.2 [cm/s2] logg [3.08/5] Log of the surface acceleration due to
gravity
32- 35 F4.2 km/s Vt [0.15/5.68] Microturbulent velocity (Vt)
37- 41 F5.2 [Sun] [Na/H] [-2.5/1.9]? Log abundance of sodium
43- 47 F5.2 [Sun] [Mg/H] [-2.1/2.1]? Log abundance of magnesium
49- 53 F5.2 [Sun] [Al/H] [-1.2/1.3]? Log abundance of aluminum
55- 59 F5.2 [Sun] [Si/H] [-1.7/3.2]? Log abundance of silicon
61- 65 F5.2 [Sun] [S/H] [-0.6/4.7]? Log abundance of sulfur
67- 71 F5.2 [Sun] [Ca/H] [-2.3/2.1]? Log abundance of calcium
73- 77 F5.2 [Sun] [Sc/H] [-1.8/2.4]? Log abundance of scandium
79- 83 F5.2 [Sun] [Ti/H] [-2.2/1.9]? Log abundance of titanium
85- 89 F5.2 [Sun] [V/H] [-2.8/2.1]? Log abundance of vanadium
91- 95 F5.2 [Sun] [Cr/H] [-2.5/1.8]? Log abundance of chromium
97-101 F5.2 [Sun] [Mn/H] [-2.7/1.9]? Log abundance of manganese
103-107 F5.2 [Sun] [Fe/H] [-2.3/1.1]? Log abundance of iron
109-113 F5.2 [Sun] [Co/H] [-1.9/2.1]? Log abundance of cobalt
115-119 F5.2 [Sun] [Ni/H] [-2.2/1.8]? Log abundance of nickel
121-125 F5.2 [Sun] [Cu/H] [-2.1/1.7]? Log abundance of copper
127-131 F5.2 [Sun] [Zn/H] [-2.3/4]? Log abundance of zinc
133-137 F5.2 [Sun] [Sr/H] [-1.7/2.7]? Log abundance of strontium
139-143 F5.2 [Sun] [Y/H] [-1.9/2.4]? Log abundance of yttrium
145-149 F5.2 [Sun] [Zr/H] [-1.1/4.6]? Log abundance of zirconium
151-155 F5.2 [Sun] [Ba/H] [-3.2/1.2]? Log abundance of barium
157-161 F5.2 [Sun] [La/H] [-1.2/2.6]? Log abundance of lanthanum
163-167 F5.2 [Sun] [Ce/H] [-1.1/3.1]? Log abundance of cerium
169-173 F5.2 [Sun] [Nd/H] [-1/3.6]? Log abundance of neodymium
175-179 F5.2 [Sun] [Sm/H] [-0.9/3.4]? Log abundance of samarium
181-185 F5.2 [Sun] [Eu/H] [-2.3/3.3]? Log abundance of europium
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Name Name of the primary star
20 A1 --- Sce [EHS] Source for spectroscopic material
(E=ELODIE, H=HET, or S=Sandiford) (G1)
22- 25 I4 K Teff [3644/7671] Effective temperature
27- 30 F4.2 [cm/s2] logg [3/5] Log surface gravity
32- 35 F4.2 km/s Vt [0.15/5.7] Microturbulent velocity (Vt)
37- 40 F4.1 km/s vsini [0/97.2] Rotational velocity (Vr)
42- 45 F4.2 [Sun] Fe [5.15/8.5] Iron abundance (1)
47- 51 F5.2 [-] Li [-1.1/3.8]? Lithium abundance (2)
53- 57 F5.2 [-] NLTE [-0.1/0.2]? Correction for Non Local
Thermodynamic Equilibrium
59 A1 --- l_Li [L] L=Upper limit flag on lithium abundance
61- 64 F4.2 [-] 505.2 [6.4/8.9]? Carbon abundance from C I 505.2nm
line (3)
66- 69 F4.2 [-] 538.0 [6.9/9.1]? Carbon abundance from C I 538.0nm
line (3)
71- 74 F4.2 [-] C2 [6.4/9.3]? Carbon abundance from C2 Swan lines
(primary indicator at 513.5nm) (3)
76- 79 F4.2 [-] 615.5 [6.5/9.4]? Oxygen abundance from [OI] 630.0nm
line (4)
81- 84 F4.2 [-] 630.0 [6.5/9.5]? Oxygen abundance from O I 615.5
triplet (4)
86- 89 F4.2 [-] [6.6/9.3]? Mean carbon abundance (weights
discussed in Section 3.3) (3)
91- 94 F4.2 [-] [6.5/9.5]? Mean oxygen abundance (weights
discussed in Section 3.3) (4)
--------------------------------------------------------------------------------
Note (1): The solar iron abundance is 7.47 relative to H=12.
Note (2): The solar lithium abundance is 1.0dex.
Note (3):
The individual carbon features are combined as below:
For Teff<5250K, only C2 513.5nm is used;
At 5250<T<6000K, C I 505.2 and 538.0nm have weight 1 as does C2 513.5;
For 6000K<T<6350K, the two C I lines have weight 2, and C2 has weight 1;
Above Teff>6350K, the two C2 are not used and the two C I lines have
equal weight.
Relative strength and blending are the basis for the weights. A typical
range in abundance for the features is 0.15 dex. The Asplund et al.
2009ARA&A..47..481A 2009ARA&A..47..481A carbon abundance, logεC=8.43, is adopted for
the solar reference abundance.
Note (4): Oxygen abundance indicators were averaged in the following manner: for
Teff<5250K, [O I] only is used. For 5250K<Teff<6000K, O I has weight 1
and [O I] has weight 3. In the regime 6000K<Teff<6350K, O I and [O I]
have equal weight. Lastly, for Teff>6350K only O I is used. Near the
solar temperature, typical differences between oxygen derived from O I and
[O I] are of order 0.15dex. For Teff<5500K, the C-O interlock has been
taken into account in the abundance determination.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Name Name of the primary star
20- 28 A9 --- Tag ID tag for the star
30 A1 --- Sce [EHS] Source for spectroscopic material
(E=ELODIE, H=HET, or S=Sandiford) (G1)
32- 35 I4 K Teff [3644/7671] Effective temperature
37- 40 F4.2 [cm/s2] logg [3/5] Log surface gravity
42- 45 F4.2 km/s Vt [0.15/5.7] Microturbulent velocity (Vt)
47- 51 F5.2 [Sun] <[NaI/H]> [-2.5/1.9]? Mean abundance of element [NaI/H]
relative to solar
53- 56 F4.2 [Sun] e_<[NaI/H]> [0.02/1.2]? Standard Deviation of <[NaI/H]>
58 I1 --- o_<[NaI/H]> [1/8]? Number of lines used in <[NaI/H]>
60- 64 F5.2 [Sun] <[MgI/H]> [-2.1/2.1]? Mean abundance of element [MgI/H]
relative to solar
66- 69 F4.2 [Sun] e_<[MgI/H]> [0/1.4]? Standard Deviation of <[MgI/H]>
71 I1 --- o_<[MgI/H]> [1/8]? Number of lines used in <[MgI/H]>
73- 77 F5.2 [Sun] <[AlI/H]> [-1.2/1.3]? Mean abundance of element [AlI/H]
relative to solar
79- 82 F4.2 [Sun] e_<[AlI/H]> [0/0.95]? Standard Deviation of <[AlI/H]>
84 I1 --- o_<[AlI/H]> [1/8]? Number of lines used in <[AlI/H]>
86- 90 F5.2 [Sun] <[SiI/H]> [-1.7/2.5]? Mean abundance of element [SiI/H]
relative to solar
92- 95 F4.2 [Sun] e_<[SiI/H]> [0.04/1]? Standard Deviation of <[SiI/H]>
97- 98 I2 --- o_<[SiI/H]> [1/70]? Number of lines used in <[SiI/H]>
100-104 F5.2 [Sun] <[SiII/H]> [-1.7/6.8]? Mean abundance of element
[SiII/H] relative to solar
106-109 F4.2 [Sun] e_<[SiII/H]> [0/1.1]? Standard Deviation of <[SiII/H]>
111 I1 --- o_<[SiII/H]> [1/2]? Number of lines used in <[SiII/H]>
113-117 F5.2 [Sun] <[SI/H]> [-0.6/4.7]? Mean abundance of element [SI/H]
relative to solar
119-122 F4.2 [Sun] e_<[SI/H]> [0/1.4]? Standard Deviation of <[SI/H]>
124-125 I2 --- o_<[SI/H]> [1/11]? Number of lines used in <[SI/H]>
127-131 F5.2 [Sun] <[CaI/H]> [-2.3/1.1]? Mean abundance of element [CaI/H]
relative to solar
133-136 F4.2 [Sun] e_<[CaI/H]> [0.02/1.7]? Standard Deviation of <[CaI/H]>
138-139 I2 --- o_<[CaI/H]> [1/36]? Number of lines used in <[CaI/H]>
141-145 F5.2 [Sun] <[CaII/H]> [-0.7/4.9]? Mean abundance of element
[CaII/H] relative to solar
147-150 F4.2 [Sun] e_<[CaII/H]> [0/1.1]? Standard Deviation of <[CaII/H]>
152 I1 --- o_<[CaII/H]> [1/4]? Number of lines used in <[CaII/H]>
154-158 F5.2 [Sun] <[ScI/H]> [-1.5/3.2]? Mean abundance of element [ScI/H]
relative to solar
160-163 F4.2 [Sun] e_<[ScI/H]> [0.01/1.2]? Standard Deviation of <[ScI/H]>
165-166 I2 --- o_<[ScI/H]> [1/13]? Number of lines used in <[ScI/H]>
168-172 F5.2 [Sun] <[ScII/H]> [-1.9/2.2]? Mean abundance of element
[ScII/H] relative to solar
174-177 F4.2 [Sun] e_<[ScII/H]> [0/1.4]? Standard Deviation of <[ScII/H]>
179-180 I2 --- o_<[ScII/H]> [1/18]? Number of lines used in <[ScII/H]>
182-186 F5.2 [Sun] <[TiI/H]> [-2.1/1.9]? Mean abundance of element [TiI/H]
relative to solar
188-191 F4.2 [Sun] e_<[TiI/H]> [0.07/1.5]? Standard Deviation of <[TiI/H]>
193-195 I3 --- o_<[TiI/H]> [3/152]? Number of lines used in <[TiI/H]>
197-201 F5.2 [Sun] <[TiII/H]> [-2.3/2.4]? Mean abundance of element
[TiII/H] relative to solar
203-206 F4.2 [Sun] e_<[TiII/H]> [0.03/1.1]? Standard Deviation of <[TiII/H]>
208-209 I2 --- o_<[TiII/H]> [1/48]? Number of lines used in <[TiII/H]>
211-215 F5.2 [Sun] <[VI/H]> [-2.8/2.7]? Mean abundance of element [VI/H]
relative to solar
217-220 F4.2 [Sun] e_<[VI/H]> [0.01/1.3]? Standard Deviation of <[VI/H]>
222-223 I2 --- o_<[VI/H]> [1/69]? Number of lines used in <[VI/H]>
225-229 F5.2 [Sun] <[VII/H]> [-1.6/4]? Mean abundance of element [VII/H]
relative to solar
231-234 F4.2 [Sun] e_<[VII/H]> [0/2.1]? Standard Deviation of <[VII/H]>
236-237 I2 --- o_<[VII/H]> [1/11]? Number of lines used in <[VII/H]>
239-243 F5.2 [Sun] <[CrI/H]> [-2.6/1.8]? Mean abundance of element [CrI/H]
relative to solar
245-248 F4.2 [Sun] e_<[CrI/H]> [0.06/2]? Standard Deviation of <[CrI/H]>
250-252 I3 --- o_<[CrI/H]> [1/142]? Number of lines used in <[CrI/H]>
254-258 F5.2 [Sun] <[CrII/H]> [-2.32/3.68]? Mean abundance of element
[CrII/H] relative to solar
260-263 F4.2 [Sun] e_<[CrII/H]> [0.03/1.2]? Standard Deviation of <[CrII/H]>
265-266 I2 --- o_<[CrII/H]> [1/21]? Number of lines used in <[CrII/H]>
268-272 F5.2 [Sun] <[MnI/H]> [-2.7/1.9]? Mean abundance of element [MnI/H]
relative to solar
274-277 F4.2 [Sun] e_<[MnI/H]> [0.02/1.5]? Standard Deviation of <[MnI/H]>
279-280 I2 --- o_<[MnI/H]> [1/38]? Number of lines used in <[MnI/H]>
282-286 F5.2 [Sun] <[FeI/H]> [-2.4/1.1]? Mean abundance of element [FeI/H]
relative to solar
288-291 F4.2 [Sun] e_<[FeI/H]> [0.04/0.6]? Standard Deviation of <[FeI/H]>
293-295 I3 --- o_<[FeI/H]> [3/639]? Number of lines used in <[FeI/H]>
297-301 F5.2 [Sun] <[FeII/H]> [-2.3/4]? Mean abundance of element [FeII/H]
relative to solar
303-306 F4.2 [Sun] e_<[FeII/H]> [0.01/1.7]? Standard Deviation of <[FeII/H]>
308-309 I2 --- o_<[FeII/H]> [1/90]? Number of lines used in <[FeII/H]>
311-315 F5.2 [Sun] <[CoI/H]> [-1.9/2.1]? Mean abundance of element [CoI/H]
relative to solar
317-320 F4.2 [Sun] e_<[CoI/H]> [0.05/1.1]? Standard Deviation of <[CoI/H]>
322-323 I2 --- o_<[CoI/H]> [1/96]? Number of lines used in <[CoI/H]>
325-329 F5.2 [Sun] <[NiI/H]> [-2.2/1.8]? Mean abundance of element [NiI/H]
relative to solar
331-334 F4.2 [Sun] e_<[NiI/H]> [0.05/1]? Standard Deviation of <[NiI/H]>
336-338 I3 --- o_<[NiI/H]> [1/201]? Number of lines used in <[NiI/H]>
340-344 F5.2 [Sun] <[CuI/H]> [-2.1/1.7]? Mean abundance of element [CuI/H]
relative to solar
346-349 F4.2 [Sun] e_<[CuI/H]> [0/1]? Standard Deviation of <[CuI/H]>
351 I1 --- o_<[CuI/H]> [1/4]? Number of lines used in <[CuI/H]>
353-357 F5.2 [Sun] <[ZnI/H]> [-2.3/4]? Mean abundance of element [ZnI/H]
relative to solar
359-362 F4.2 [Sun] e_<[ZnI/H]> [0/1]? Standard Deviation of <[ZnI/H]>
364 I1 --- o_<[ZnI/H]> [1/4]? Number of lines used in <[ZnI/H]>
366-370 F5.2 [Sun] <[SrI/H]> [-1.7/2.7]? Mean abundance of element [SrI/H]
relative to solar
372-375 F4.2 [Sun] e_<[SrI/H]> [0/0.9]? Standard Deviation of <[SrI/H]>
377 I1 --- o_<[SrI/H]> [1/4]? Number of lines used in <[SrI/H]>
379-383 F5.2 [Sun] <[YI/H]> [-1.6/2.8]? Mean abundance of element [YI/H]
relative to solar
385-388 F4.2 [Sun] e_<[YI/H]> [0/2.1]? Standard Deviation of <[YI/H]>
390-391 I2 --- o_<[YI/H]> [1/13]? Number of lines used in <[YI/H]>
393-397 F5.2 [Sun] <[YII/H]> [-1.9/2.9]? Mean abundance of element [YII/H]
relative to solar
399-402 F4.2 [Sun] e_<[YII/H]> [0.03/1.4]? Standard Deviation of <[YII/H]>
404-405 I2 --- o_<[YII/H]> [1/18]? Number of lines used in <[YII/H]>
407-411 F5.2 [Sun] <[ZrI/H]> [-1.1/4.6]? Mean abundance of element [ZrI/H]
relative to solar
413-416 F4.2 [Sun] e_<[ZrI/H]> [0/1.4]? Standard Deviation of <[ZrI/H]>
418-419 I2 --- o_<[ZrI/H]> [1/20]? Number of lines used in <[ZrI/H]>
421-425 F5.2 [Sun] <[ZrII/H]> [-1.5/4]? Mean abundance of element [ZrII/H]
relative to solar
427-430 F4.2 [Sun] e_<[ZrII/H]> [0/1.6]? Standard deviation of <[ZrII/H]>
432-433 I2 --- o_<[ZrII/H]> [1/10]? Number of lines used in <[ZrII/H]>
435-439 F5.2 [Sun] <[BaII/H]> [-3.2/1.2]? Mean abundance of element
[BaII/H] relative to solar
441-444 F4.2 [Sun] e_<[BaII/H]> [0/0.8]? Standard Deviation of <[BaII/H]>
446 I1 --- o_<[BaII/H]> [1/4]? Number of lines used in <[BaII/H]>
448-452 F5.2 [Sun] <[LaII/H]> [-1.2/2.6]? Mean abundance of element
[LaII/H] relative to solar
454-457 F4.2 [Sun] e_<[LaII/H]> [0/1.4]? Standard Deviation of <[LaII/H]>
459-460 I2 --- o_<[LaII/H]> [1/12]? Number of lines used in <[LaII/H]>
462-466 F5.2 [Sun] <[CeII/H]> [-1.1/3.1]? Mean abundance of element
[CeII/H] relative to solar
468-471 F4.2 [Sun] e_<[CeII/H]> [0.01/2]? Standard Deviation of <[CeII/H]>
473-474 I2 --- o_<[CeII/H]> [1/38]? Number of lines used in <[CeII/H]>
476-480 F5.2 [Sun] <[PrII/H]> [-0.8/3.1]? Mean abundance of element
[PrII/H] relative to solar
482-485 F4.2 [Sun] e_<[PrII/H]> [0/1.5]? Standard Deviation of <[PrII/H]>
487 I1 --- o_<[PrII/H]> [1/8]? Number of lines used in <[PrII/H]>
489-493 F5.2 [Sun] <[NdII/H]> [-1/3.6]? Mean abundance of element [NdII/H]
relative to solar
495-498 F4.2 [Sun] e_<[NdII/H]> [0/2.9]? Standard Deviation of <[NdII/H]>
500-501 I2 --- o_<[NdII/H]> [1/53]? Number of lines used in <[NdII/H]>
503-507 F5.2 [Sun] <[SmII/H]> [-0.9/3.4]? Mean abundance of element
[SmII/H] relative to solar
509-512 F4.2 [Sun] e_<[SmII/H]> [0.01/1.7]? Standard Deviation of <[SmII/H]>
514-515 I2 --- o_<[SmII/H]> [1/35]? Number of lines used in <[SmII/H]>
517-521 F5.2 [Sun] <[EuI/H]> [-2.3/2.1]? Mean abundance of element [EuI/H]
relative to solar
523 F1.0 [Sun] e_<[EuI/H]> ? Standard Deviation of <[EuI/H]>
525 I1 --- o_<[EuI/H]> [1/1]? Number of lines used in <[EuI/H]>
527-531 F5.2 [Sun] <[EuII/H]> [-1.6/3.22]? Mean abundance of element
[EuII/H] relative to solar
533-536 F4.2 [Sun] e_<[EuII/H]> [0/1.11]? Standard Deviation of <[EuII/H]>
538 I1 --- o_<[EuII/H]> [1/4]? Number of lines used in <[EuII/H]>
--------------------------------------------------------------------------------
Global Notes:
Note (G1): Source for spectroscopic material is defined as follows:
E = ELODIE Archive (Observatoire de Haute Provence, Moultaka et al.
2004PASP..116..693M 2004PASP..116..693M);
H = High-Resolution Spectrograph, Hobby-Eberly Telescope (HET);
S = Sandiford Echelle, McDonald Observatory 2.1m Telescope.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Luck et al., Paper I 2015AJ....150...88L 2015AJ....150...88L, Cat. J/AJ/150/88
Luck et al., Paper III 2018AJ....155..111L 2018AJ....155..111L
(End) Prepared by [AAS]; Sylvain Guehenneux [CDS] 16-Jun-2017