J/AJ/154/67 HAZMAT. II. Low-mass stars with GALEX UV observations (Miles+, 2017)
HAZMAT. II. Ultraviolet variability of low-mass stars in the GALEX archive.
    Miles B.E., Shkolnik E.L.
   <Astron. J., 154, 67-67 (2017)>
   =2017AJ....154...67M 2017AJ....154...67M    (SIMBAD/NED BibCode)
ADC_Keywords: Stars, dwarfs ; Stars, M-type ; Photometry, ultraviolet ;
              Stars, distances ; Spectral types ; Stars, ages
Keywords: stars: activity - stars: late-type - techniques: photometric -
          ultraviolet: planetary systems
Abstract:
    The ultraviolet (UV) light from a host star influences a planet's
    atmospheric photochemistry and will affect interpretations of
    exoplanetary spectra from future missions like the James Webb Space
    Telescope. These effects will be particularly critical in the study of
    planetary atmospheres around M dwarfs, including Earth-sized planets
    in the habitable zone. Given the higher activity levels of M dwarfs
    compared to Sun-like stars, time-resolved UV data are needed for more
    accurate input conditions for exoplanet atmospheric modeling. The
    Galaxy Evolution Explorer (GALEX) provides multi-epoch photometric
    observations in two UV bands: near-ultraviolet (NUV; 1771-2831Å)
    and far-ultraviolet (FUV; 1344-1786Å). Within 30pc of Earth, there
    are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with
    multiple GALEX observations. Simultaneous NUV and FUV detections exist
    for 145 stars in both GALEX bands. Our analyses of these data show
    that low-mass stars are typically more variable in the FUV than the
    NUV. Median variability increases with later spectral types in the NUV
    with no clear trend in the FUV. We find evidence that flares increase
    the FUV flux density far more than the NUV flux density, leading to
    variable FUV to NUV flux density ratios in the GALEX bandpasses.The
    ratio of FUV to NUV flux is important for interpreting the presence of
    atmospheric molecules in planetary atmospheres such as oxygen and
    methane as a high FUV to NUV ratio may cause false-positive
    biosignature detections. This ratio of flux density in the GALEX bands
    spans three orders of magnitude in our sample, from 0.008 to 4.6, and
    is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun.
    These results characterize the UV behavior for the largest set of
    low-mass stars to date.
Description:
    In this second paper of the HAbitable Zones and M dwarf Activity
    across Time (HAZMAT) series, we use archived data from both Galaxy
    Evolution Explorer (GALEX) photometric bands to measure the
    variability of 376 low-mass stars with spectral types ranging from K7
    to M7.
    Our target list consisted of 1124 low-mass stars with photometric
    distances out to 25pc of Earth assuming field ages (Reid et al. 2007,
    Cat. J/AJ/133/2825).
File Summary:
--------------------------------------------------------------------------------
 FileName    Lrecl    Records    Explanations
--------------------------------------------------------------------------------
ReadMe          80          .    This file
table1.dat     145        376    Low-mass stars with multiple Galaxy Evolution
                                  Explorer (GALEX) ultraviolet (UV) observations
--------------------------------------------------------------------------------
See also:
 I/239   : The Hipparcos and Tycho Catalogues (ESA 1997)
 III/198 : Palomar/MSU nearby star spectroscopic survey (Hawley+ 1997)
 J/A+A/577/A128 : CARMENES input catalogue. I (Alonso-Floriano+, 2015)
 J/ApJ/804/64   : Empirical and model parameters of 183 M dwarfs (Mann+, 2015)
 J/AJ/148/64    : HAZMAT. I. UV emission in early M stars (Shkolnik+, 2014)
 J/AJ/147/146   : Spectroscopy of Tuc-Hor candidate members (Kraus+, 2014)
 J/AJ/147/20    : Spectroscopy of 447 nearby M dwarfs (Newton+, 2014)
 J/AJ/145/102   : Spectroscopy of bright M dwarfs (Lepine+, 2013)
 J/AJ/143/80    : Low-mass members of B Pic & AB DOR (Schlieder+, 2012)
 J/A+A/556/A15  : Effective temperature scale of M dwarfs (Rajpurohit+, 2013)
 J/ApJ/758/56   : Young M dwarfs within 25pc. II. Kinematics (Shkolnik+, 2012)
 J/ApJ/704/975  : Rotational velocities for M dwarfs (Jenkins+, 2009)
 J/ApJ/699/649  : Young M dwarfs within 25pc. I. (Shkolnik+, 2009)
 J/AJ/133/2825  : Star beyond the NLTT catalog (Reid+, 2007)
 J/AJ/132/161   : NStars project: The southern sample. I. (Gray+, 2006)
 J/A+A/460/695  : Search for Associations Containing Young stars (Torres+, 2006)
 J/A+A/442/211  : Spectroscopic distances of 322 NLTT stars (Scholz+, 2005)
 J/AJ/126/2048  : NStars project: the Northern Sample. I. (Gray+, 2003)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label  Explanations
--------------------------------------------------------------------------------
   1- 16  A16   ---     Name   Star name
      17  A1    ---   f_Name   [h] Flag on Name (h=IRXS source; there is only
                                one)
  19- 27  F9.5  deg     RAdeg  Right Ascension in decimal degrees
                                (Eq=J2000, Epoch=2007)
  29- 37  F9.5  deg     DEdeg  Declination in decimal degrees
                                (Eq=J2000, Epoch=2007)
  39- 42  A4    ---     SpT    Spectral type
  44- 47  I4    Myr     Age    [15/5000] Age (1)
  49- 50  I2    ---   r_Age    [7/18]? Age reference (2)
  52- 53  I2    ---   r_SpT    [1/16]? Spectral type reference (2)
  55- 58  F4.1  pc      Dist   [1.7/29.4] Distance
  60- 61  I2    ---     Ndet   [1/81]? Number of Near-UltraViolet (NUV;
                                1771-2831Å) detections
      63  I1    ---     Nul    [1/2]? Number of NUV upper limits
  65- 66  A2    ---   l_ [≤] Upper limit flag on 
  67- 73  F7.2  uJy      [1.07/3844.76]? Mean NUV flux density
                                (fNUV, µ) (3)
  75- 79  F5.2  uJy   e_ [0.04/85.17]? Error in 
  81- 82  A2    ---   l_SNUV0  [≤] Upper limit flag on SNUV0
  83- 89  F7.2  uJy     SNUV0  [0.64/3804.04]? Minimum NUV flux density (3)
  91- 97  F7.2  uJy     SNUV1  [1.48/3920.06]? Maximum NUV flux density (3)
  99-102  F4.2  ---     NMAD   [0/0.76]? NUV Median Absolute Deviation (MAD)
                                divided by the median indicated by MADrel in
                                our plots
 104-105  I2    ---     Fdet   [1/15]? Number of Far-UltraViolet (FUV;
                                1344-1786Å) detections
 107-108  I2    ---     Ful    [1/79]? Number of FUV upper limits
 110-111  A2    ---   l_ [≤] Upper limit flag on 
 112-118  F7.2  uJy      [0.38/1663.33]? Mean FUV flux density
                                (fFUV, µ) (3)
 120-124  F5.2  uJy   e_ [0.03/41.17]? Error in 
 126-127  A2    ---   l_SFUV0  [≤] Upper limit flag on SFUV0
 128-133  F6.2  uJy     SFUV0  [0.14/309.92]? Minimum FUV flux density (3)
 135-140  F6.2  uJy     SFUV1  [0.46/603.74]? Maximum FUV flux density (3)
 142-145  F4.2  ---     FMAD   [0/0.86]? FUV Median Absolute Deviation (MAD)
                                divided by the median indicated by MADrel in
                                our plots
--------------------------------------------------------------------------------
Note (1): If no age is provided by the literature, the star is assumed to be
     5Gyr old.
Note (2): The reference codes are defined as follows:
      1 = Reid et al. 2007 (Cat. J/AJ/133/2825);
      2 = Reid et al. 1995 (Cat. III/198), Hawley et al. 1996 (Cat. III/198);
      3 = Alonso-Floriano et al. 2015 (Cat. J/A+A/577/A128);
      4 = Gray et al. 2003 (Cat. J/AJ/126/2048);
      5 = Gray et al. 2006 (Cat. J/AJ/132/161);
      6 = Jenkins et al. 2009 (Cat. J/ApJ/704/975);
      7 = Kraus et al. 2014 (Cat. J/AJ/147/146);
      8 = Lepine et al. 2013 (Cat. J/AJ/145/102);
      9 = Mann et al. 2015 (Cat. J/ApJ/804/64);
     10 = Newton et al. 2014 (Cat. J/AJ/147/20);
     11 = Rajpurohit et al. 2013 (Cat. J/A+A/556/A15);
     12 = Scholz et al. 2005 (Cat. J/A+A/442/211);
     13 = Shkolnik et al. 2009 (Cat. J/ApJ/699/649);
     14 = Shkolnik et al. 2012 (Cat. J/ApJ/758/56);
     15 = Shkolnik et al. (2014ApJ...796L..20S 2014ApJ...796L..20S);
     16 = Torres et al. 2006 (Cat. J/A+A/460/695);
     17 = Schlieder et al. 2012 (Cat. J/AJ/143/80);
     18 = Shkolnik et al. 2017 (Cat. J/AJ/154/69).
Note (3): Values are scaled to 10pc.
--------------------------------------------------------------------------------
History:
    From electronic version of the journal
References:
    Shkolnik et al.       Paper I.     2014AJ....148...64S 2014AJ....148...64S   Cat. J/AJ/148/64
    Miles et al.          Paper II.    2017AJ....154...67M 2017AJ....154...67M   This catalog
    Schneider et al.      Paper III.   2018AJ....155..122S 2018AJ....155..122S   Cat. J/AJ/155/122
    Parke Loyd et al.     Paper IV.    2018ApJ...867...70P 2018ApJ...867...70P
    Richey-Yowell et al.  Paper V.     2019ApJ...872...17R 2019ApJ...872...17R   Cat. J/ApJ/872/17
    Peacock et al.        Paper VI.    2020ApJ...895....5P 2020ApJ...895....5P
(End)                                    Sylvain Guehenneux [CDS]    08-Nov-2017