J/AJ/155/111 Abundances in the local region. III. Southern dwarfs (Luck, 2018)
Abundances in the local region.
III. Southern F, G, and K dwarfs.
Luck R.E.
<Astron. J., 155, 111 (2018)>
=2018AJ....155..111L 2018AJ....155..111L (SIMBAD/NED BibCode)
ADC_Keywords: Stars, nearby ; Stars, dwarfs ; Stars, F-type ; Stars, G-type ;
Stars, K-type ; Effective temperatures ; Stars, masses ;
Stars, ages ; Abundances ; Radial velocities ; Stars, distances
Keywords: Galaxy: abundances - stars: abundances - stars: evolution -
stars: fundamental parameters
Abstract:
Stellar parameters and abundances have been derived from a sample of
907 F, G, and K dwarfs. The high-resolution, high signal-to-noise spectra
utilized were acquired with the HARPS spectrograph of the European
Southern Observatory. The stars in the sample with -0.2<[Fe/H]<+0.2 have
abundances that strongly resemble that of the Sun, except for the lithium
content and the lanthanides. Near the solar temperature, stars show two
orders of magnitude range in lithium content. The average content of
stars in the local region appears to be enhanced at about the +0.1 level
relative to the Sun for the lanthanides. There are over 100 planet hosts
in this sample, and there is no discernible difference between them
and the non-hosts regarding their lithium content.
Description:
For this study, the ESO Archive was searched for dwarfs with HARPS data.
The method used was essentially brute force. All reduced HARPS spectra
were downloaded, and the objects identified as to type: i.e., dwarf,
giant, or other according to the spectral type or parallax information
found in SIMBAD. Then, the highest signal-to-noise usable spectra with
S/N>75 was located for each dwarf. This process yielded 907 dwarfs, of
which all but one are Hipparcos stars.
The spectra used in this work are from the HARPS spectrograph (Mayor et al.
2003Msngr.114...20M 2003Msngr.114...20M) located on the 3.6 m telescope of the European
Southern Observatory. The data were obtained in the period 2003-2015, and
are drawn from over 140 observing programs. HARPS spectra have a resolution
of 115000 and are continuous over the wavelength range 400-680 nm. The ESO
Archive provides the pipeline-reduced spectra used in this analysis.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 142 907 Program stars
table2.dat 105 907 Effective temperature, mass, and age data
table3.dat 65 908 Parameter and iron data
table4.dat 182 908 [x/H] for Z > 10
table5.dat 111 908 Lithium, carbon, and oxygen data
table6.dat 480 908 Log ε details for Z > 10
--------------------------------------------------------------------------------
See also:
I/239 : The Hipparcos and Tycho Catalogues (ESA 1997)
I/274 : CCDM (Catalog of Components of Double Multiple stars) (Dommanget+ 2002)
J/AJ/77/486 : Dwarf K and M stars in Southern hemisphere (Upgren+, 1972)
J/A+AS/106/275 : Theoretical isochrones (Bertelli+ 1994)
J/MNRAS/349/757 : Masses, ages and metallicities of F-G dwarfs (Lambert+, 2004)
J/MNRAS/372/163 : Activity indices for southern stars (Jenkins+, 2006)
J/A+A/533/A141 : Stellar parameters for 582 HARPS FGK stars (Sousa+, 2011)
J/A+A/545/A32 : Chemical abundances of 1111 FGK stars (Adibekyan+, 2012)
J/ApJ/764/78 : Oxygen abundances in nearby FGK stars (Ramirez+, 2013)
J/A+A/562/A71 : Chemical abundances of solar neighbourhood dwarfs
(Bensby+, 2014)
J/A+A/576/A89 : O abundances from HARPS in F-G stars (Bertran de Lis+, 2015)
J/AJ/150/88 : Abundances in the local region. I. G and K giants
(Luck, 2015)
J/ApJ/833/225 : -2.6≤[Fe/H]≤0.2 F and G dwarfs. II. Abundances
(Zhao+, 2016)
J/A+A/599/A96 : [C/H] Chemical abundances of 1110 stars
(Suarez-Andres+, 2017)
J/AJ/153/21 : Abundances in the local region. II. F, G, and K dwarfs
(Luck+, 2017)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Primary identifier (G1)
14- 20 A7 --- HD HD identifier (G1)
22- 27 I6 --- HIP [57/118321]? Hipparcos number (Cat. I/239) (G1)
29- 32 I4 --- HR [6/8969]? HR number (G1)
34- 44 A11 --- CCDM Identifier in the Catalog of Components of
Double & Multiple stars (cat. I/274) (G1)
45- 46 A2 --- m_CCDM CCDM component
48- 63 A16 --- Cluster Cluster identifier (G1)
65- 79 A15 --- SpType MK spectral type (G1)
81- 86 F6.2 mas plx [5.41/796.92] Hipparcos parallax (G1)
88- 92 F5.2 mas e_plx [0.14/25.9]? Error in plx (G1)
94- 99 F6.3 mag Vmag [0.01/10.38] Apparent Johnson V band magnitude
(G1)
101-108 F8.3 km/s RV [-171.42/310.77]? Radial velocity (G1)
110-115 F6.4 km/s e_RV [0/7.4]? Error in RV (G1)
117 A1 --- l_vsin(i) [<] Limit flag on vsin(i)
118-123 F6.2 km/s vsin(i) [0/100]? Literature projected rotational
velocity
125-129 F5.1 pc Dist [1.3/184.8] Distance
131-135 F5.3 mag E(B-V) [0/0.042] The (B-V) color excess (1)
137-140 F4.2 mag VMag [3.01/8.4] Absolute V band magnitude
142 A1 --- Host [H] Indicates system hosts planet(s) (2)
--------------------------------------------------------------------------------
Note (1): Computed from the extinction method of Hakkila et al.
(1997AJ....114.2043H 1997AJ....114.2043H); except for d<75 pc the extinction is set to 0.
Note (2): The source is The Extrasolar Planets Encyclopedia
(Exoplanets team 2017, http://exoplanet.eu/).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Primary identifier (G1)
14- 17 I4 K Teff [4174/6815] Effective temperature
19- 20 I2 K e_Teff [8/99]? Standard deviation in Teff
22- 23 I2 --- o_Teff [1/13] Number of color(s) used to derive
Teff
25- 29 F5.2 [Lsun] logL [-1.12/0.79] Log luminosity (logL/L☉)
31- 34 F4.2 Msun B1Mass [0.62/1.45]? Mass determined from the
Bertelli et al. (1994, J/A+AS/106/275)
isochrones
36- 40 F5.2 Gyr B1Age [0.63/12.02]? Age determined from the
Bertelli et al. (1994, J/A+AS/106/275)
isochrones
42- 45 F4.2 Msun DMass [0.57/1.49]? Mass determined from the
Dotter et al. (2008ApJS..178...89D 2008ApJS..178...89D)
isochrones
47- 51 F5.2 Gyr DAge [0.6/12.5]? Age determined from the
Dotter et al. (2008ApJS..178...89D 2008ApJS..178...89D)
isochrones
53- 56 F4.2 Msun YMass [0.58/1.51]? Mass determined from the
Demarque et al. (2004ApJS..155..667D 2004ApJS..155..667D)
isochrones
58- 62 F5.2 Gyr YAge [0.6/12.0]? Age determined from the
Demarque et al. (2004ApJS..155..667D 2004ApJS..155..667D)
isochrones
64- 67 F4.2 Msun B2Mass [0.56/1.48]? Mass determined from the
BaSTI Team (2016) isochrones (1)
69- 73 F5.2 Gyr B2Age [0.6/12.5]? Age determined from the
BaSTI Team (2016) isochrones (1)
75- 78 F4.2 Msun Massavg [0.57/1.47]? Average mass
80- 83 F4.2 Msun MRange [0/0.49]? Range in mass determination
85- 89 F5.2 Gyr Ageavg [0.6/12.13]? Average age
91- 95 F5.2 Gyr ARange [0/10.79]? Range in age determination
97-100 F4.2 Msun Mass [0.57/1.47] Adopted mass (2)
102-105 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2)
--------------------------------------------------------------------------------
Note (1): BaSTI Ver. 5.0.1: http://basti.oa-teramo.inaf.it/.
Note (2): If Massavg is present it is that value. For stars with no Massavg,
mass determined from the effective temperature - Massavg relation.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Primary identifier (G1)
14- 17 I4 K Teff [4174/6815] Effective temperature
19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2)
24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity
29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3)
34- 37 F4.2 [-] [FeI/H] [5.43/8.39] Total iron abundance computed
from neutral iron lines (1)
39- 42 F4.2 [-] e_[FeI/H] [0.02/1.18] Standard deviation in [FeI/H]
44- 46 I3 --- o_[FeI/H] [2/548] Number of neutral iron lines used
to calculate [FeI/H]
48- 51 F4.2 [-] [FeII/H] [5.42/9.37]? Total iron abundance computed
from first-ionization stage iron lines (1)
53- 56 F4.2 [-] e_[FeII/H] [0.03/1.29]? Standard deviation in [FeII/H]
58- 59 I2 --- o_[FeII/H] [1/81]? Number of first-ionization stage
iron lines used to calculate [FeII/H]
61- 65 F5.2 [Sun] [Fe/H] [-2.04/1.02] Differential value in
logarithms relative to the solar abundance
for iron (2)
--------------------------------------------------------------------------------
Note (1): The solar iron abundance is 7.47.
Note (2): Logarithmic iron abundance relative to the
Sun=((o[FeI/H]*[FeI/H])+(o[FeII/H]*[FeII/H]))/(o[FeI/H]+o[FeII/H])-7.47.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Primary identifier (G1)
14- 17 I4 K Teff [4174/6815] Effective temperature
19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2)
24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity
29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3)
34- 38 F5.2 [Sun] [Na/H] [-2.14/1.33]? Differential value in logarithm
relative to the solar abundance for sodium (1)
40- 44 F5.2 [Sun] [Mg/H] [-1.81/1.09]? Differential value in logarithm
relative to the solar abundance for magnesium
(1)
46- 50 F5.2 [Sun] [Al/H] [-1.36/0.57]? Differential value in logarithm
relative to the solar abundance for aluminum (1)
52- 56 F5.2 [Sun] [Si/H] [-1.48/0.97]? Differential value in logarithm
relative to the solar abundance for silicon (1)
58- 62 F5.2 [Sun] [S/H] [-0.68/1.91]? Differential value in logarithm
relative to the solar abundance for sulfur (1)
64- 68 F5.2 [Sun] [Ca/H] [-1.76/2.04]? Differential value in logarithm
relative to the solar abundance for calcium (1)
70- 74 F5.2 [Sun] [Sc/H] [-1.97/2.7]? Differential value in logarithm
relative to the solar abundance for scandium (1)
76- 80 F5.2 [Sun] [Ti/H] [-1.72/1.93] Differential value in logarithm
relative to the solar abundance for titanium (1)
82- 86 F5.2 [Sun] [V/H] [-2.38/2.07]? Differential value in logarithm
relative to the solar abundance for vanadium (1)
88- 92 F5.2 [Sun] [Cr/H] [-2.11/1.62] Differential value in logarithm
relative to the solar abundance for chromium (1)
94- 98 F5.2 [Sun] [Mn/H] [-2.62/2.76]? Differential value in logarithm
relative to the solar abundance for manganese
(1)
100-104 F5.2 [Sun] [Fe/H] [-2.04/1.03] Differential value in logarithm
relative to the solar abundance for iron (1)
106-110 F5.2 [Sun] [Co/H] [-2.05/3.3]? Differential value in logarithm
relative to the solar abundance for cobalt (1)
112-116 F5.2 [Sun] [Ni/H] [-2.1/1.28] Differential value in logarithm
relative to the solar abundance for nickel (1)
118-122 F5.2 [Sun] [Cu/H] [-1.61/0.94]? Differential value in logarithm
relative to the solar abundance for copper (1)
124-128 F5.2 [Sun] [Zn/H] [-2.04/0.71]? Differential value in logarithm
relative to the solar abundance for zinc (1)
130-134 F5.2 [Sun] [Sr/H] [-1.88/2.45]? Differential value in logarithm
relative to the solar abundance for strontium
(1)
136-140 F5.2 [Sun] [Y/H] [-1.86/2.12]? Differential value in logarithm
relative to the solar abundance for yttrium (1)
142-146 F5.2 [Sun] [Zr/H] [-1.72/3.14]? Differential value in logarithm
relative to the solar abundance for zirconium
(1)
148-152 F5.2 [Sun] [Ba/H] [-2.24/0.72]? Differential value in logarithm
relative to the solar abundance for barium (1)
154-158 F5.2 [Sun] [La/H] [-1.6/1.31]? Differential value in logarithm
relative to the solar abundance for lanthanum
(1)
160-164 F5.2 [Sun] [Ce/H] [-1.06/3.48]? Differential value in logarithm
relative to the solar abundance for cerium (1)
166-170 F5.2 [Sun] [Nd/H] [-1.77/5.58]? Differential value in logarithm
relative to the solar abundance for neodymium
(1)
172-176 F5.2 [Sun] [Sm/H] [-0.91/3.62]? Differential value in logarithm
relative to the solar abundance for samarium (1)
178-182 F5.2 [Sun] [Eu/H] [-0.23/0.71]? Differential value in logarithm
relative to the solar abundance for europium (1)
--------------------------------------------------------------------------------
Note (1): With respect to the solar value. Abundances with both neutral and
ionized species are calculated thus:
=((nI*AI)+(nII*AII))/(nI+nII) where "I" refers to the neutral
species, "II" to the first ionized, n is the number of lines, and A is the
abundance. The number of lines and abundances are given in Table 6. The solar
abundances were determined using reflection spectra of the Moon and Vesta.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Primary identifier (G1)
14- 17 I4 K Teff [4174/6815] Effective temperature
19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2)
24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity
29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3)
34- 38 F5.2 [Sun] [Fe/H] [-2.04/1.02] Iron abundance (1)
40- 44 F5.2 [-] [Li/H] [-0.5/3.4] Lithium abundance (2)
46- 50 F5.2 --- NLTE [-0.04/0.19] Correction for non-local
thermodynamic equilibrium
52 A1 --- l_[Li/H] [<] Upper limit flag on [Li/H]
54- 57 F4.2 [-] C505.2 [6.56/9.2]? Log carbon abundance from
C I 505.2 nm line
59- 62 F4.2 [-] C538.2 [6.16/8.78]? Log carbon abundance from
C I 538.2 nm line
64- 67 F4.2 [-] C2 [7.47/9.08]? Log carbon abundance from
C2 Swan lines (primary indicator at
513.5 nm)
69- 72 F4.2 [-] O615.5 [8.08/9.46]? Log oxygen abundance from
O I 615.5 nm triplet
74- 77 F4.2 [-] O630.0 [7.74/9.28]? Log oxygen abundance from
[O I] 630.0 nm line
79- 82 F4.2 [-] Cmean [6.53/9.06]? Mean log carbon abundance (3)
84- 87 F4.2 [-] Omean [7.74/9.28]? Mean log oxygen abundance (3)
89- 93 F5.2 [Sun] [C/H]mean [-1.9/0.63]? Mean carbon abundance relative
to the solar value
95- 99 F5.2 [Sun] [O/H]mean [-0.95/0.59]? Mean oxygen abundance
relative to the solar value
101-105 F5.2 [Sun] [C/Fe]mean [-1.24/0.82]? Mean carbon abundance
relative to iron
107-111 F5.2 [Sun] [O/Fe]mean [-0.44/1.2]? Mean oxygen abundance relative
to iron
--------------------------------------------------------------------------------
Note (1): The solar iron abundance is 7.47 relative to H=12.
Note (2): The solar lithium abundance is 1.0 dex.
Note (3): Weights discussed in the text.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Primary identifier (G1)
14- 17 I4 K Teff [4174/6815] Effective temperature
19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2)
24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity
29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3)
34- 37 F4.2 [-] logNaI [4.14/7.61]? Mean log Na I number abundance
(1)
39- 42 F4.2 [-] e_logNaI [0.01/0.46]? Standard deviation in logNaI
44 I1 --- o_logNaI [1/8]? Number of lines used to derive logNaI
46- 49 F4.2 [-] logMgI [5.87/8.77]? Mean log Mg I number abundance
(1)
51- 54 F4.2 [-] e_logMgI [0.02/0.59]? Standard deviation in logMgI
56 I1 --- o_logMgI [1/8]? Number of lines used to derive logMgI
58- 61 F4.2 [-] logAlI [5.16/7.08]? Mean log Al I number abundance
(1)
63- 66 F4.2 [-] e_logAlI [0/0.4]? Standard deviation in logAlI
68 I1 --- o_logAlI [1/3]? Number of lines used to derive logAlI
70- 73 F4.2 [-] logSiI [6.05/8.6]? Mean log Si I number abundance (1)
75- 78 F4.2 [-] e_logSiI [0.02/1.32]? Standard deviation in logSiI
80- 81 I2 --- o_logSiI [1/50]? Number of lines used to derive logSiI
83- 87 F5.2 [-] logSiII [5.84/10.47]? Mean log Si II number abundance
(1)
89- 92 F4.2 [-] e_logSiII [0/0.57]? Standard deviation in logSiII
94 I1 --- o_logSiII [1/2]? Number of lines used to derive logSiII
96- 99 F4.2 [-] logSI [6.56/9.14]? Mean log S I number abundance (1)
101-104 F4.2 [-] e_logSI [0/0.97]? Standard deviation in logSI
106 I1 --- o_logSI [1/8]? Number of lines used to derive logSI
108-112 F5.2 [-] logCaI [-1.69/2.11]? Mean log Ca I number abundance
(1)
114-117 F4.2 [-] e_logCaI [0.03/0.59]? Standard deviation in logCaI
119-120 I2 --- o_logCaI [1/41]? Number of lines used to derive logCaI
122-126 F5.2 [-] logCaII [-0.56/2.76]? Mean log Ca II number abundance
(1)
128-131 F4.2 [-] e_logCaII [0/1.29]? Standard deviation in logCaII
133 I1 --- o_logCaII [1/4]? Number of lines used to derive logCaII
135-138 F4.2 [-] logScI [2.05/5.87]? Mean log Sc I number abundance
(1)
140-143 F4.2 [-] e_logScI [0.01/1.04]? Standard deviation in logScI
145-146 I2 --- o_logScI [1/15]? Number of lines used to derive logScI
148-151 F4.2 [-] logScII [1.2/4.71]? Mean log Sc II number abundance
(1)
153-156 F4.2 [-] e_logScII [0.01/0.69]? Standard deviation in logScII
158-159 I2 --- o_logScII [1/17]? Number of lines used to derive logScII
161-164 F4.2 [-] logTiI [3.31/6.92] Mean log Ti I number abundance (1)
166-169 F4.2 [-] e_logTiI [0.04/1.65] Standard deviation in logTiI
171-173 I3 --- o_logTiI [2/172] Number of lines used to derive logTiI
175-178 F4.2 [-] logTiII [3.16/6.56]? Mean log Ti II number abundance
(1)
180-183 F4.2 [-] e_logTiII [0.03/1.18]? Standard deviation in logTiII
185-186 I2 --- o_logTiII [1/50]? Number of lines used to derive logTiII
188-191 F4.2 [-] logVI [1.53/5.98]? Mean log V I number abundance (1)
193-196 F4.2 [-] e_logVI [0.03/2.63]? Standard deviation in logVI
198-199 I2 --- o_logVI [1/76]? Number of lines used to derive logVI
201-204 F4.2 [-] logVII [1.79/7.05]? Mean log V II number abundance
(1)
206-209 F4.2 [-] e_logVII [0.01/1.27]? Standard deviation in logVII
211-212 I2 --- o_logVII [1/11]? Number of lines used to derive logVII
214-217 F4.2 [-] logCrI [3.43/7.35]? Mean log Cr I number abundance
(1)
219-222 F4.2 [-] e_logCrI [0.03/1.3]? Standard deviation in logCrI
224-226 I3 --- o_logCrI [1/156]? Number of lines used to derive logCrI
228-231 F4.2 [-] logCrII [3.69/8.41]? Mean log Cr II number abundance
(1)
233-236 F4.2 [-] e_logCrII [0/1.11]? Standard deviation in logCrII
238-239 I2 --- o_logCrII [1/20]? Number of lines used to derive logCrII
241-244 F4.2 [-] logMnI [2.85/8.24]? Mean log Mn I number abundance
(1)
246-249 F4.2 [-] e_logMnI [0.04/1.13]? Standard deviation in logMnI
251-252 I2 --- o_logMnI [1/41]? Number of lines used to derive logMnI
254-257 F4.2 [-] logFeI [5.43/8.39] Mean log Fe I number abundance (1)
259-262 F4.2 [-] e_logFeI [0.02/1.18] Standard deviation in logFeI
264-266 I3 --- o_logFeI [2/548] Number of lines used to derive logFeI
268-271 F4.2 [-] logFeII [5.42/9.37]? Mean log Fe II number abundance
(1)
273-276 F4.2 [-] e_logFeII [0.03/1.29]? Standard deviation in logFeII
278-279 I2 --- o_logFeII [1/81]? Number of lines used to derive logFeII
281-284 F4.2 [-] logCoI [2.89/8.24]? Mean log Co I number abundance
(1)
286-289 F4.2 [-] e_logCoI [0/1.59]? Standard deviation in logCoI
291-292 I2 --- o_logCoI [1/75]? Number of lines used to derive logCoI
294-297 F4.2 [-] logNiI [4.12/7.5] Mean log Ni I number abundance (1)
299-302 F4.2 [-] e_logNiI [0.04/1.22]? Standard deviation in logNiI
304-306 I3 --- o_logNiI [1/186] Number of lines used to derive logNiI
308-311 F4.2 [-] logCuI [2.61/5.16]? Mean log Cu I number abundance
(1)
313-316 F4.2 [-] e_logCuI [0/1.25]? Standard deviation in logCuI
318 I1 --- o_logCuI [1/6]? Number of lines used to derive logCuI
320-323 F4.2 [-] logZnI [2.53/5.28]? Mean log Zn I number abundance
(1)
325-328 F4.2 [-] e_logZnI [0.01/1.09]? Standard deviation in logZnI
330 I1 --- o_logZnI [1/4]? Number of lines used to derive logZnI
332-335 F4.2 [-] logSrI [1.09/5.42]? Mean log Sr I number abundance
(1)
337-340 F4.2 [-] e_logSrI [0/0.75]? Standard deviation in logSrI
342 I1 --- o_logSrI [1/4]? Number of lines used to derive logSrI
344-347 F4.2 [-] logYI [0.39/5.53]? Mean log Y I number abundance (1)
349-352 F4.2 [-] e_logYI [0.01/2.28]? Standard deviation in logYI
354-355 I2 --- o_logYI [1/13]? Number of lines used to derive logYI
357-360 F4.2 [-] logYII [0.43/4.14]? Mean log Y II number abundance
(1)
362-365 F4.2 [-] e_logYII [0.02/0.76]? Standard deviation in logYII
367-368 I2 --- o_logYII [1/18]? Number of lines used to derive logYII
370-373 F4.2 [-] logZrI [1.7/5.82]? Mean log Zr I number abundance (1)
375-378 F4.2 [-] e_logZrI [0.01/1.13]? Standard deviation in logZrI
380-381 I2 --- o_logZrI [1/20]? Number of lines used to derive logZrI
383-386 F4.2 [-] logZrII [0.97/5.96]? Mean log Zr II number abundance
(1)
388-391 F4.2 [-] e_logZrII [0/1.46]? Standard deviation in logZrII
393-394 I2 --- o_logZrII [1/15]? Number of lines used to derive logZrII
396-399 F4.2 [-] logBaII [0.08/3.04]? Mean log Ba II number abundance
(1)
401-404 F4.2 [-] e_logBaII [0/0.31]? Standard deviation in logBaII
406 I1 --- o_logBaII [1/4]? Number of lines used to derive logBaII
408-412 F5.2 [-] logLaII [-0.37/2.54]? Mean log La II number abundance
(1)
414-417 F4.2 [-] e_logLaII [0/1.01]? Standard deviation in logLaII
419-420 I2 --- o_logLaII [1/10]? Number of lines used to derive logLaII
422-425 F4.2 [-] logCeII [0.67/5.2]? Mean log Ce II number abundance
(1)
427-430 F4.2 [-] e_logCeII [0.01/2.47]? Standard deviation in logCeII
432-433 I2 --- o_logCeII [1/39]? Number of lines used to derive logCeII
435-439 F5.2 [-] logPrII [-0.19/4.12]? Mean log Pr II number abundance
(1)
441-444 F4.2 [-] e_logPrII [0.01/0.89]? Standard deviation in logPrII
446 I1 --- o_logPrII [1/8]? Number of lines used to derive logPrII
448-452 F5.2 [-] logNdII [-0.2/7.15]? Mean log Nd II number abundance
(1)
454-457 F4.2 [-] e_logNdII [0.05/3.48]? Standard deviation in logNdII
459-460 I2 --- o_logNdII [1/42]? Number of lines used to derive logNdII
462-465 F4.2 [-] logSmII [0.18/4.71]? Mean log Sm II number abundance
(1)
467-470 F4.2 [-] e_logSmII [0.01/2.19]? Standard deviation in logSmII
472-473 I2 --- o_logSmII [1/33]? Number of lines used to derive logSmII
475-478 F4.2 [-] logEuII [0.25/1.19]? Mean log Eu II number abundance
(1)
480 I1 --- o_logEuII [1]? Number of lines used to derive logEuII
--------------------------------------------------------------------------------
Note (1): Relative to logH (=12).
--------------------------------------------------------------------------------
Global notes:
Note (G1): Values taken from SIMBAD.
Note (G2): Surface acceleration, computed from mass, temperature, and
luminosity.
Note (G3): Assumed to be rotation profile.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Luck et al. Paper I. 2015AJ....150...88L 2015AJ....150...88L, Cat. J/AJ/150/88
Luck et al. Paper II. 2017AJ....153...21L 2017AJ....153...21L, Cat. J/AJ/153/21
(End) Prepared by [AAS], Tiphaine Pouvreau [CDS] 25-Oct-2018