J/AJ/155/111  Abundances in the local region. III. Southern dwarfs  (Luck, 2018)

Abundances in the local region. III. Southern F, G, and K dwarfs. Luck R.E. <Astron. J., 155, 111 (2018)> =2018AJ....155..111L 2018AJ....155..111L (SIMBAD/NED BibCode)
ADC_Keywords: Stars, nearby ; Stars, dwarfs ; Stars, F-type ; Stars, G-type ; Stars, K-type ; Effective temperatures ; Stars, masses ; Stars, ages ; Abundances ; Radial velocities ; Stars, distances Keywords: Galaxy: abundances - stars: abundances - stars: evolution - stars: fundamental parameters Abstract: Stellar parameters and abundances have been derived from a sample of 907 F, G, and K dwarfs. The high-resolution, high signal-to-noise spectra utilized were acquired with the HARPS spectrograph of the European Southern Observatory. The stars in the sample with -0.2<[Fe/H]<+0.2 have abundances that strongly resemble that of the Sun, except for the lithium content and the lanthanides. Near the solar temperature, stars show two orders of magnitude range in lithium content. The average content of stars in the local region appears to be enhanced at about the +0.1 level relative to the Sun for the lanthanides. There are over 100 planet hosts in this sample, and there is no discernible difference between them and the non-hosts regarding their lithium content. Description: For this study, the ESO Archive was searched for dwarfs with HARPS data. The method used was essentially brute force. All reduced HARPS spectra were downloaded, and the objects identified as to type: i.e., dwarf, giant, or other according to the spectral type or parallax information found in SIMBAD. Then, the highest signal-to-noise usable spectra with S/N>75 was located for each dwarf. This process yielded 907 dwarfs, of which all but one are Hipparcos stars. The spectra used in this work are from the HARPS spectrograph (Mayor et al. 2003Msngr.114...20M 2003Msngr.114...20M) located on the 3.6 m telescope of the European Southern Observatory. The data were obtained in the period 2003-2015, and are drawn from over 140 observing programs. HARPS spectra have a resolution of 115000 and are continuous over the wavelength range 400-680 nm. The ESO Archive provides the pipeline-reduced spectra used in this analysis. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 142 907 Program stars table2.dat 105 907 Effective temperature, mass, and age data table3.dat 65 908 Parameter and iron data table4.dat 182 908 [x/H] for Z > 10 table5.dat 111 908 Lithium, carbon, and oxygen data table6.dat 480 908 Log ε details for Z > 10 -------------------------------------------------------------------------------- See also: I/239 : The Hipparcos and Tycho Catalogues (ESA 1997) I/274 : CCDM (Catalog of Components of Double Multiple stars) (Dommanget+ 2002) J/AJ/77/486 : Dwarf K and M stars in Southern hemisphere (Upgren+, 1972) J/A+AS/106/275 : Theoretical isochrones (Bertelli+ 1994) J/MNRAS/349/757 : Masses, ages and metallicities of F-G dwarfs (Lambert+, 2004) J/MNRAS/372/163 : Activity indices for southern stars (Jenkins+, 2006) J/A+A/533/A141 : Stellar parameters for 582 HARPS FGK stars (Sousa+, 2011) J/A+A/545/A32 : Chemical abundances of 1111 FGK stars (Adibekyan+, 2012) J/ApJ/764/78 : Oxygen abundances in nearby FGK stars (Ramirez+, 2013) J/A+A/562/A71 : Chemical abundances of solar neighbourhood dwarfs (Bensby+, 2014) J/A+A/576/A89 : O abundances from HARPS in F-G stars (Bertran de Lis+, 2015) J/AJ/150/88 : Abundances in the local region. I. G and K giants (Luck, 2015) J/ApJ/833/225 : -2.6≤[Fe/H]≤0.2 F and G dwarfs. II. Abundances (Zhao+, 2016) J/A+A/599/A96 : [C/H] Chemical abundances of 1110 stars (Suarez-Andres+, 2017) J/AJ/153/21 : Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Primary identifier (G1) 14- 20 A7 --- HD HD identifier (G1) 22- 27 I6 --- HIP [57/118321]? Hipparcos number (Cat. I/239) (G1) 29- 32 I4 --- HR [6/8969]? HR number (G1) 34- 44 A11 --- CCDM Identifier in the Catalog of Components of Double & Multiple stars (cat. I/274) (G1) 45- 46 A2 --- m_CCDM CCDM component 48- 63 A16 --- Cluster Cluster identifier (G1) 65- 79 A15 --- SpType MK spectral type (G1) 81- 86 F6.2 mas plx [5.41/796.92] Hipparcos parallax (G1) 88- 92 F5.2 mas e_plx [0.14/25.9]? Error in plx (G1) 94- 99 F6.3 mag Vmag [0.01/10.38] Apparent Johnson V band magnitude (G1) 101-108 F8.3 km/s RV [-171.42/310.77]? Radial velocity (G1) 110-115 F6.4 km/s e_RV [0/7.4]? Error in RV (G1) 117 A1 --- l_vsin(i) [<] Limit flag on vsin(i) 118-123 F6.2 km/s vsin(i) [0/100]? Literature projected rotational velocity 125-129 F5.1 pc Dist [1.3/184.8] Distance 131-135 F5.3 mag E(B-V) [0/0.042] The (B-V) color excess (1) 137-140 F4.2 mag VMag [3.01/8.4] Absolute V band magnitude 142 A1 --- Host [H] Indicates system hosts planet(s) (2) -------------------------------------------------------------------------------- Note (1): Computed from the extinction method of Hakkila et al. (1997AJ....114.2043H 1997AJ....114.2043H); except for d<75 pc the extinction is set to 0. Note (2): The source is The Extrasolar Planets Encyclopedia (Exoplanets team 2017, http://exoplanet.eu/). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Primary identifier (G1) 14- 17 I4 K Teff [4174/6815] Effective temperature 19- 20 I2 K e_Teff [8/99]? Standard deviation in Teff 22- 23 I2 --- o_Teff [1/13] Number of color(s) used to derive Teff 25- 29 F5.2 [Lsun] logL [-1.12/0.79] Log luminosity (logL/L) 31- 34 F4.2 Msun B1Mass [0.62/1.45]? Mass determined from the Bertelli et al. (1994, J/A+AS/106/275) isochrones 36- 40 F5.2 Gyr B1Age [0.63/12.02]? Age determined from the Bertelli et al. (1994, J/A+AS/106/275) isochrones 42- 45 F4.2 Msun DMass [0.57/1.49]? Mass determined from the Dotter et al. (2008ApJS..178...89D 2008ApJS..178...89D) isochrones 47- 51 F5.2 Gyr DAge [0.6/12.5]? Age determined from the Dotter et al. (2008ApJS..178...89D 2008ApJS..178...89D) isochrones 53- 56 F4.2 Msun YMass [0.58/1.51]? Mass determined from the Demarque et al. (2004ApJS..155..667D 2004ApJS..155..667D) isochrones 58- 62 F5.2 Gyr YAge [0.6/12.0]? Age determined from the Demarque et al. (2004ApJS..155..667D 2004ApJS..155..667D) isochrones 64- 67 F4.2 Msun B2Mass [0.56/1.48]? Mass determined from the BaSTI Team (2016) isochrones (1) 69- 73 F5.2 Gyr B2Age [0.6/12.5]? Age determined from the BaSTI Team (2016) isochrones (1) 75- 78 F4.2 Msun Massavg [0.57/1.47]? Average mass 80- 83 F4.2 Msun MRange [0/0.49]? Range in mass determination 85- 89 F5.2 Gyr Ageavg [0.6/12.13]? Average age 91- 95 F5.2 Gyr ARange [0/10.79]? Range in age determination 97-100 F4.2 Msun Mass [0.57/1.47] Adopted mass (2) 102-105 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2) -------------------------------------------------------------------------------- Note (1): BaSTI Ver. 5.0.1: http://basti.oa-teramo.inaf.it/. Note (2): If Massavg is present it is that value. For stars with no Massavg, mass determined from the effective temperature - Massavg relation. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Primary identifier (G1) 14- 17 I4 K Teff [4174/6815] Effective temperature 19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2) 24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity 29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3) 34- 37 F4.2 [-] [FeI/H] [5.43/8.39] Total iron abundance computed from neutral iron lines (1) 39- 42 F4.2 [-] e_[FeI/H] [0.02/1.18] Standard deviation in [FeI/H] 44- 46 I3 --- o_[FeI/H] [2/548] Number of neutral iron lines used to calculate [FeI/H] 48- 51 F4.2 [-] [FeII/H] [5.42/9.37]? Total iron abundance computed from first-ionization stage iron lines (1) 53- 56 F4.2 [-] e_[FeII/H] [0.03/1.29]? Standard deviation in [FeII/H] 58- 59 I2 --- o_[FeII/H] [1/81]? Number of first-ionization stage iron lines used to calculate [FeII/H] 61- 65 F5.2 [Sun] [Fe/H] [-2.04/1.02] Differential value in logarithms relative to the solar abundance for iron (2) -------------------------------------------------------------------------------- Note (1): The solar iron abundance is 7.47. Note (2): Logarithmic iron abundance relative to the Sun=((o[FeI/H]*[FeI/H])+(o[FeII/H]*[FeII/H]))/(o[FeI/H]+o[FeII/H])-7.47. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Primary identifier (G1) 14- 17 I4 K Teff [4174/6815] Effective temperature 19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2) 24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity 29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3) 34- 38 F5.2 [Sun] [Na/H] [-2.14/1.33]? Differential value in logarithm relative to the solar abundance for sodium (1) 40- 44 F5.2 [Sun] [Mg/H] [-1.81/1.09]? Differential value in logarithm relative to the solar abundance for magnesium (1) 46- 50 F5.2 [Sun] [Al/H] [-1.36/0.57]? Differential value in logarithm relative to the solar abundance for aluminum (1) 52- 56 F5.2 [Sun] [Si/H] [-1.48/0.97]? Differential value in logarithm relative to the solar abundance for silicon (1) 58- 62 F5.2 [Sun] [S/H] [-0.68/1.91]? Differential value in logarithm relative to the solar abundance for sulfur (1) 64- 68 F5.2 [Sun] [Ca/H] [-1.76/2.04]? Differential value in logarithm relative to the solar abundance for calcium (1) 70- 74 F5.2 [Sun] [Sc/H] [-1.97/2.7]? Differential value in logarithm relative to the solar abundance for scandium (1) 76- 80 F5.2 [Sun] [Ti/H] [-1.72/1.93] Differential value in logarithm relative to the solar abundance for titanium (1) 82- 86 F5.2 [Sun] [V/H] [-2.38/2.07]? Differential value in logarithm relative to the solar abundance for vanadium (1) 88- 92 F5.2 [Sun] [Cr/H] [-2.11/1.62] Differential value in logarithm relative to the solar abundance for chromium (1) 94- 98 F5.2 [Sun] [Mn/H] [-2.62/2.76]? Differential value in logarithm relative to the solar abundance for manganese (1) 100-104 F5.2 [Sun] [Fe/H] [-2.04/1.03] Differential value in logarithm relative to the solar abundance for iron (1) 106-110 F5.2 [Sun] [Co/H] [-2.05/3.3]? Differential value in logarithm relative to the solar abundance for cobalt (1) 112-116 F5.2 [Sun] [Ni/H] [-2.1/1.28] Differential value in logarithm relative to the solar abundance for nickel (1) 118-122 F5.2 [Sun] [Cu/H] [-1.61/0.94]? Differential value in logarithm relative to the solar abundance for copper (1) 124-128 F5.2 [Sun] [Zn/H] [-2.04/0.71]? Differential value in logarithm relative to the solar abundance for zinc (1) 130-134 F5.2 [Sun] [Sr/H] [-1.88/2.45]? Differential value in logarithm relative to the solar abundance for strontium (1) 136-140 F5.2 [Sun] [Y/H] [-1.86/2.12]? Differential value in logarithm relative to the solar abundance for yttrium (1) 142-146 F5.2 [Sun] [Zr/H] [-1.72/3.14]? Differential value in logarithm relative to the solar abundance for zirconium (1) 148-152 F5.2 [Sun] [Ba/H] [-2.24/0.72]? Differential value in logarithm relative to the solar abundance for barium (1) 154-158 F5.2 [Sun] [La/H] [-1.6/1.31]? Differential value in logarithm relative to the solar abundance for lanthanum (1) 160-164 F5.2 [Sun] [Ce/H] [-1.06/3.48]? Differential value in logarithm relative to the solar abundance for cerium (1) 166-170 F5.2 [Sun] [Nd/H] [-1.77/5.58]? Differential value in logarithm relative to the solar abundance for neodymium (1) 172-176 F5.2 [Sun] [Sm/H] [-0.91/3.62]? Differential value in logarithm relative to the solar abundance for samarium (1) 178-182 F5.2 [Sun] [Eu/H] [-0.23/0.71]? Differential value in logarithm relative to the solar abundance for europium (1) -------------------------------------------------------------------------------- Note (1): With respect to the solar value. Abundances with both neutral and ionized species are calculated thus: =((nI*AI)+(nII*AII))/(nI+nII) where "I" refers to the neutral species, "II" to the first ionized, n is the number of lines, and A is the abundance. The number of lines and abundances are given in Table 6. The solar abundances were determined using reflection spectra of the Moon and Vesta. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Primary identifier (G1) 14- 17 I4 K Teff [4174/6815] Effective temperature 19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2) 24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity 29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3) 34- 38 F5.2 [Sun] [Fe/H] [-2.04/1.02] Iron abundance (1) 40- 44 F5.2 [-] [Li/H] [-0.5/3.4] Lithium abundance (2) 46- 50 F5.2 --- NLTE [-0.04/0.19] Correction for non-local thermodynamic equilibrium 52 A1 --- l_[Li/H] [<] Upper limit flag on [Li/H] 54- 57 F4.2 [-] C505.2 [6.56/9.2]? Log carbon abundance from C I 505.2 nm line 59- 62 F4.2 [-] C538.2 [6.16/8.78]? Log carbon abundance from C I 538.2 nm line 64- 67 F4.2 [-] C2 [7.47/9.08]? Log carbon abundance from C2 Swan lines (primary indicator at 513.5 nm) 69- 72 F4.2 [-] O615.5 [8.08/9.46]? Log oxygen abundance from O I 615.5 nm triplet 74- 77 F4.2 [-] O630.0 [7.74/9.28]? Log oxygen abundance from [O I] 630.0 nm line 79- 82 F4.2 [-] Cmean [6.53/9.06]? Mean log carbon abundance (3) 84- 87 F4.2 [-] Omean [7.74/9.28]? Mean log oxygen abundance (3) 89- 93 F5.2 [Sun] [C/H]mean [-1.9/0.63]? Mean carbon abundance relative to the solar value 95- 99 F5.2 [Sun] [O/H]mean [-0.95/0.59]? Mean oxygen abundance relative to the solar value 101-105 F5.2 [Sun] [C/Fe]mean [-1.24/0.82]? Mean carbon abundance relative to iron 107-111 F5.2 [Sun] [O/Fe]mean [-0.44/1.2]? Mean oxygen abundance relative to iron -------------------------------------------------------------------------------- Note (1): The solar iron abundance is 7.47 relative to H=12. Note (2): The solar lithium abundance is 1.0 dex. Note (3): Weights discussed in the text. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Primary identifier (G1) 14- 17 I4 K Teff [4174/6815] Effective temperature 19- 22 F4.2 [cm/s2] logg [3.79/5.13] Log surface gravity (G2) 24- 27 F4.2 km/s Vt [0.17/5] Microturbulent velocity 29- 32 F4.1 km/s Vbroad [1.2/80] Broadening velocity (G3) 34- 37 F4.2 [-] logNaI [4.14/7.61]? Mean log Na I number abundance (1) 39- 42 F4.2 [-] e_logNaI [0.01/0.46]? Standard deviation in logNaI 44 I1 --- o_logNaI [1/8]? Number of lines used to derive logNaI 46- 49 F4.2 [-] logMgI [5.87/8.77]? Mean log Mg I number abundance (1) 51- 54 F4.2 [-] e_logMgI [0.02/0.59]? Standard deviation in logMgI 56 I1 --- o_logMgI [1/8]? Number of lines used to derive logMgI 58- 61 F4.2 [-] logAlI [5.16/7.08]? Mean log Al I number abundance (1) 63- 66 F4.2 [-] e_logAlI [0/0.4]? Standard deviation in logAlI 68 I1 --- o_logAlI [1/3]? Number of lines used to derive logAlI 70- 73 F4.2 [-] logSiI [6.05/8.6]? Mean log Si I number abundance (1) 75- 78 F4.2 [-] e_logSiI [0.02/1.32]? Standard deviation in logSiI 80- 81 I2 --- o_logSiI [1/50]? Number of lines used to derive logSiI 83- 87 F5.2 [-] logSiII [5.84/10.47]? Mean log Si II number abundance (1) 89- 92 F4.2 [-] e_logSiII [0/0.57]? Standard deviation in logSiII 94 I1 --- o_logSiII [1/2]? Number of lines used to derive logSiII 96- 99 F4.2 [-] logSI [6.56/9.14]? Mean log S I number abundance (1) 101-104 F4.2 [-] e_logSI [0/0.97]? Standard deviation in logSI 106 I1 --- o_logSI [1/8]? Number of lines used to derive logSI 108-112 F5.2 [-] logCaI [-1.69/2.11]? Mean log Ca I number abundance (1) 114-117 F4.2 [-] e_logCaI [0.03/0.59]? Standard deviation in logCaI 119-120 I2 --- o_logCaI [1/41]? Number of lines used to derive logCaI 122-126 F5.2 [-] logCaII [-0.56/2.76]? Mean log Ca II number abundance (1) 128-131 F4.2 [-] e_logCaII [0/1.29]? Standard deviation in logCaII 133 I1 --- o_logCaII [1/4]? Number of lines used to derive logCaII 135-138 F4.2 [-] logScI [2.05/5.87]? Mean log Sc I number abundance (1) 140-143 F4.2 [-] e_logScI [0.01/1.04]? Standard deviation in logScI 145-146 I2 --- o_logScI [1/15]? Number of lines used to derive logScI 148-151 F4.2 [-] logScII [1.2/4.71]? Mean log Sc II number abundance (1) 153-156 F4.2 [-] e_logScII [0.01/0.69]? Standard deviation in logScII 158-159 I2 --- o_logScII [1/17]? Number of lines used to derive logScII 161-164 F4.2 [-] logTiI [3.31/6.92] Mean log Ti I number abundance (1) 166-169 F4.2 [-] e_logTiI [0.04/1.65] Standard deviation in logTiI 171-173 I3 --- o_logTiI [2/172] Number of lines used to derive logTiI 175-178 F4.2 [-] logTiII [3.16/6.56]? Mean log Ti II number abundance (1) 180-183 F4.2 [-] e_logTiII [0.03/1.18]? Standard deviation in logTiII 185-186 I2 --- o_logTiII [1/50]? Number of lines used to derive logTiII 188-191 F4.2 [-] logVI [1.53/5.98]? Mean log V I number abundance (1) 193-196 F4.2 [-] e_logVI [0.03/2.63]? Standard deviation in logVI 198-199 I2 --- o_logVI [1/76]? Number of lines used to derive logVI 201-204 F4.2 [-] logVII [1.79/7.05]? Mean log V II number abundance (1) 206-209 F4.2 [-] e_logVII [0.01/1.27]? Standard deviation in logVII 211-212 I2 --- o_logVII [1/11]? Number of lines used to derive logVII 214-217 F4.2 [-] logCrI [3.43/7.35]? Mean log Cr I number abundance (1) 219-222 F4.2 [-] e_logCrI [0.03/1.3]? Standard deviation in logCrI 224-226 I3 --- o_logCrI [1/156]? Number of lines used to derive logCrI 228-231 F4.2 [-] logCrII [3.69/8.41]? Mean log Cr II number abundance (1) 233-236 F4.2 [-] e_logCrII [0/1.11]? Standard deviation in logCrII 238-239 I2 --- o_logCrII [1/20]? Number of lines used to derive logCrII 241-244 F4.2 [-] logMnI [2.85/8.24]? Mean log Mn I number abundance (1) 246-249 F4.2 [-] e_logMnI [0.04/1.13]? Standard deviation in logMnI 251-252 I2 --- o_logMnI [1/41]? Number of lines used to derive logMnI 254-257 F4.2 [-] logFeI [5.43/8.39] Mean log Fe I number abundance (1) 259-262 F4.2 [-] e_logFeI [0.02/1.18] Standard deviation in logFeI 264-266 I3 --- o_logFeI [2/548] Number of lines used to derive logFeI 268-271 F4.2 [-] logFeII [5.42/9.37]? Mean log Fe II number abundance (1) 273-276 F4.2 [-] e_logFeII [0.03/1.29]? Standard deviation in logFeII 278-279 I2 --- o_logFeII [1/81]? Number of lines used to derive logFeII 281-284 F4.2 [-] logCoI [2.89/8.24]? Mean log Co I number abundance (1) 286-289 F4.2 [-] e_logCoI [0/1.59]? Standard deviation in logCoI 291-292 I2 --- o_logCoI [1/75]? Number of lines used to derive logCoI 294-297 F4.2 [-] logNiI [4.12/7.5] Mean log Ni I number abundance (1) 299-302 F4.2 [-] e_logNiI [0.04/1.22]? Standard deviation in logNiI 304-306 I3 --- o_logNiI [1/186] Number of lines used to derive logNiI 308-311 F4.2 [-] logCuI [2.61/5.16]? Mean log Cu I number abundance (1) 313-316 F4.2 [-] e_logCuI [0/1.25]? Standard deviation in logCuI 318 I1 --- o_logCuI [1/6]? Number of lines used to derive logCuI 320-323 F4.2 [-] logZnI [2.53/5.28]? Mean log Zn I number abundance (1) 325-328 F4.2 [-] e_logZnI [0.01/1.09]? Standard deviation in logZnI 330 I1 --- o_logZnI [1/4]? Number of lines used to derive logZnI 332-335 F4.2 [-] logSrI [1.09/5.42]? Mean log Sr I number abundance (1) 337-340 F4.2 [-] e_logSrI [0/0.75]? Standard deviation in logSrI 342 I1 --- o_logSrI [1/4]? Number of lines used to derive logSrI 344-347 F4.2 [-] logYI [0.39/5.53]? Mean log Y I number abundance (1) 349-352 F4.2 [-] e_logYI [0.01/2.28]? Standard deviation in logYI 354-355 I2 --- o_logYI [1/13]? Number of lines used to derive logYI 357-360 F4.2 [-] logYII [0.43/4.14]? Mean log Y II number abundance (1) 362-365 F4.2 [-] e_logYII [0.02/0.76]? Standard deviation in logYII 367-368 I2 --- o_logYII [1/18]? Number of lines used to derive logYII 370-373 F4.2 [-] logZrI [1.7/5.82]? Mean log Zr I number abundance (1) 375-378 F4.2 [-] e_logZrI [0.01/1.13]? Standard deviation in logZrI 380-381 I2 --- o_logZrI [1/20]? Number of lines used to derive logZrI 383-386 F4.2 [-] logZrII [0.97/5.96]? Mean log Zr II number abundance (1) 388-391 F4.2 [-] e_logZrII [0/1.46]? Standard deviation in logZrII 393-394 I2 --- o_logZrII [1/15]? Number of lines used to derive logZrII 396-399 F4.2 [-] logBaII [0.08/3.04]? Mean log Ba II number abundance (1) 401-404 F4.2 [-] e_logBaII [0/0.31]? Standard deviation in logBaII 406 I1 --- o_logBaII [1/4]? Number of lines used to derive logBaII 408-412 F5.2 [-] logLaII [-0.37/2.54]? Mean log La II number abundance (1) 414-417 F4.2 [-] e_logLaII [0/1.01]? Standard deviation in logLaII 419-420 I2 --- o_logLaII [1/10]? Number of lines used to derive logLaII 422-425 F4.2 [-] logCeII [0.67/5.2]? Mean log Ce II number abundance (1) 427-430 F4.2 [-] e_logCeII [0.01/2.47]? Standard deviation in logCeII 432-433 I2 --- o_logCeII [1/39]? Number of lines used to derive logCeII 435-439 F5.2 [-] logPrII [-0.19/4.12]? Mean log Pr II number abundance (1) 441-444 F4.2 [-] e_logPrII [0.01/0.89]? Standard deviation in logPrII 446 I1 --- o_logPrII [1/8]? Number of lines used to derive logPrII 448-452 F5.2 [-] logNdII [-0.2/7.15]? Mean log Nd II number abundance (1) 454-457 F4.2 [-] e_logNdII [0.05/3.48]? Standard deviation in logNdII 459-460 I2 --- o_logNdII [1/42]? Number of lines used to derive logNdII 462-465 F4.2 [-] logSmII [0.18/4.71]? Mean log Sm II number abundance (1) 467-470 F4.2 [-] e_logSmII [0.01/2.19]? Standard deviation in logSmII 472-473 I2 --- o_logSmII [1/33]? Number of lines used to derive logSmII 475-478 F4.2 [-] logEuII [0.25/1.19]? Mean log Eu II number abundance (1) 480 I1 --- o_logEuII [1]? Number of lines used to derive logEuII -------------------------------------------------------------------------------- Note (1): Relative to logH (=12). -------------------------------------------------------------------------------- Global notes: Note (G1): Values taken from SIMBAD. Note (G2): Surface acceleration, computed from mass, temperature, and luminosity. Note (G3): Assumed to be rotation profile. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Luck et al. Paper I. 2015AJ....150...88L 2015AJ....150...88L, Cat. J/AJ/150/88 Luck et al. Paper II. 2017AJ....153...21L 2017AJ....153...21L, Cat. J/AJ/153/21
(End) Prepared by [AAS], Tiphaine Pouvreau [CDS] 25-Oct-2018
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line