J/AJ/156/126  Stellar parameters & abund. from BACCHUS analysis (Jonsson+, 2018)

APOGEE Data Releases 13 and 14: stellar parameter and abundance comparisons with independent analyses. Jonsson H., Prieto C.A., Holtzman J.A., Feuillet D.K., Hawkins K., Cunha K., Meszaros S., Hasselquist S., Fernandez-Trincado J.G., Garcia-Hernandez D.A., Bizyaev D., Carrera R., Majewski S.R., Pinsonneault M.H., Shetrone M., Smith V., Sobeck J., Souto D., Stringfellow G.S., Teske J., Zamora O. <Astron. J., 156, 126 (2018)> =2018AJ....156..126J 2018AJ....156..126J (SIMBAD/NED BibCode)
ADC_Keywords: Stars, dwarfs ; Stars, giant ; Abundances ; Effective temperatures ; Models Keywords: Galaxy: abundances - stars: abundances - surveys Abstract: Data from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) have been released as part of SDSS Data Releases 13 (DR13) and 14 (DR14). These include high-resolution H-band spectra, radial velocities, and derived stellar parameters and abundances. DR13, released in 2016 August, contained APOGEE data for roughly 150000 stars, and DR14, released in 2017 August, added about 110000 more. Stellar parameters and abundances have been derived with an automated pipeline, the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). We evaluate the performance of this pipeline by comparing the derived stellar parameters and abundances to those inferred from optical spectra and analysis for several hundred stars. For most elements - C, Na, Mg, Al, Si, S, Ca, Cr, Mn, Ni - the DR14 ASPCAP analyses have systematic differences with the comparisons samples of less than 0.05 dex (median), and random differences of less than 0.15 dex (standard deviation). These differences are a combination of the uncertainties in both the comparison samples as well as the ASPCAP analysis. Compared to the references, magnesium is the most accurate alpha-element derived by ASPCAP, and shows a very clear thin/thick disk separation, while nickel is the most accurate iron-peak element (besides iron itself). Description: We have observed a sample of 100 stars using the optical spectrometer ARCES (R∼32000) on the Apache Point 3.5 m telescope. The stars were chosen from the APOGEE catalog to have a spread in stellar parameters, and include both dwarfs and giants with a wide range of metallicities. The stars have 0.0<V<11.1 and the spectra have an S/N that ranges from 50=<S/N=<300, with a median S/N of 115 around 6000 Å. For determination of the stellar parameters as well as the abundances of O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Rb, and Y, we used the Brussels Automatic Code for Characterizing High AccUracy Spectra (henceforth BACCHUS; Masseron et al. 2016ascl.soft05004M). BACCHUS is a stellar parameter and abundance analysis pipeline that uses Turbospectrum in combination with MARCS spherical 1D LTE models. The model atmosphere grid is alpha-enhanced for the lower metallicities according to the "standard" MARCS scheme. The stellar parameters are determined in the classical way, demanding excitation and ionization equilibrium using a set of Fe I and Fe II lines. The analysis performed is similar to that described in Hawkins et al. (2015MNRAS.447.2046H 2015MNRAS.447.2046H), with the exception of the line list used: here we used the Gaia-ESO line list (v.5, U. Heiter et al. 2015PhyS...90e4010H 2015PhyS...90e4010H, 2018, in preparation), complemented with line information from the VALD database (Kupka et al. 2000BaltA...9..590K 2000BaltA...9..590K; Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R) for the non-covered wavelength regimes in the Gaia-ESO list. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 31 73 The line data used in the BACCHUS analysis table2.dat 37 6802 Line-to-line abundances from the BACCHUS analysis table3.dat 340 100 Stellar parameters and abundances from the BACCHUS analysis -------------------------------------------------------------------------------- See also: II/246 : 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) J/AJ/146/133 : Stellar parameters from SDSS-III APOGEE DR10 (Meszaros+, 2013) J/ApJ/794/125 : IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014) J/AJ/151/144 : ASPCAP weights for the 15 APOGEE chemical elements (Garcia+, 2016) J/ApJ/852/50 : Galactic halo with APOGEE. II. Abundances. (Fernandez-Alvar+, 2018) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- El Element 7- 15 F9.4 0.1nm Wave [4981.7305/8773.896] Wavelength (Å) 17- 23 F7.4 [-] loggf [-9.715/0.57] Log of the oscillator strength times the statistical weight of the lower energy level 25- 31 F7.4 eV Elow [0/14.677] Lower excitation energy level -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 22 A22 --- 2MASS 2MASS position based star name (2MASSJHHMMSSss+DDMMSSs) 24- 25 A2 --- El Element 27- 32 F6.1 0.1nm Line [4981.7/8773.9] Line (Å) 34- 37 F4.2 --- A(El) [0/9.36] BACCHUS absolute abundance -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 22 A22 --- 2MASS 2MASS position based star name (2MASSJHHMMSSss+DDMMSSs) 24- 27 I4 K Teff [3993/6642] Stellar effective temperature 29- 31 I3 K e_Teff [2/179] Uncertainty in Teff 33- 36 F4.2 [cm/s2] logg [1.15/4.63] Surface gravity 38- 41 F4.2 [cm/s2] e_logg [0/0.84] Uncertainty in logg 43- 47 F5.2 [-] [Fe/H] [-1.79/0.51] Log abundance, [Fe/H] 49- 52 F4.2 [-] e_[Fe/H] [0.06/0.14] Uncertainty in [Fe/H] 54- 57 F4.2 km/s Vturb [0/1.9] Microturbulent velocity 59- 62 F4.2 km/s e_Vturb [0.03/0.13] Uncertainty in Vturb 64- 71 F8.2 [-] [O/Fe] [-0.2/0.71]?=-9999. Log abundance, [O/Fe] (1) 73- 80 F8.2 [-] e_[O/Fe] [0.01/9.73]?=-9999. Uncertainty in [O/Fe] (1) 82- 89 F8.2 [-] [Na/Fe] [-0.25/0.47]?=-9999. Log abundance, [Na/Fe] (1) 91- 98 F8.2 [-] e_[Na/Fe] [0.01/0.19]?=-9999. Uncertainty in [Na/Fe] (1) 100-107 F8.2 [-] [Mg/Fe] [-0.19/0.46]?=-9999. Log abundance, [Mg/Fe] (1) 109-116 F8.2 [-] e_[Mg/Fe] [0/0.11]?=-9999. Uncertainty in [Mg/Fe] (1) 118-125 F8.2 [-] [Al/Fe] [-0.19/0.47]?=-9999. Log abundance, [Al/Fe] (1) 127-134 F8.2 [-] e_[Al/Fe] [0.01/0.08]?=-9999. Uncertainty in [Al/Fe] (1) 136-143 F8.2 [-] [Si/Fe] [-0.16/0.42]?=-9999. Log abundance, [Si/Fe] (1) 145-152 F8.2 [-] e_[Si/Fe] [0.01/0.05]?=-9999. Uncertainty in [Si/Fe] (1) 154-161 F8.2 [-] [S/Fe] [-0.27/0.6]?=-9999. Log abundance, [S/Fe] (1) 163-170 F8.2 [-] e_[S/Fe] [0/0.07]?=-9999. Uncertainty in [S/Fe] (1) 172-179 F8.2 [-] [K/Fe] [-0.17/0.72]?=-9999. Log abundance, [K/Fe] (1) 181-188 F8.2 [-] e_[K/Fe] [0.02/0.6]?=-9999. Uncertainty in [K/Fe] (1) 190-194 F5.2 [-] [Ca/Fe] [-0.1/0.48]?=-9999. Log abundance, [Ca/Fe] (1) 196-199 F4.2 [-] e_[Ca/Fe] [0.01/0.14]?=-9999. Uncertainty in [Ca/Fe] (1) 201-208 F8.2 [-] [Ti/Fe] [-0.22/0.4]?=-9999. Log abundance, [Ti/Fe] (1) 210-217 F8.2 [-] e_[Ti/Fe] [0.02/0.11]?=-9999. Uncertainty in [Ti/Fe] (1) 219-226 F8.2 [-] [V/Fe] [-0.31/0.37]?=-9999. Log abundance, [V/Fe] (1) 228-235 F8.2 [-] e_[V/Fe] [0.01/0.09]?=-9999. Uncertainty in [V/Fe] (1) 237-241 F5.2 [-] [Cr/Fe] [-0.23/0.31]?=-9999. Log abundance, [Cr/Fe] (1) 243-246 F4.2 [-] e_[Cr/Fe] [0.01/0.12]?=-9999. Uncertainty in [Cr/Fe] (1) 248-252 F5.2 [-] [Mn/Fe] [-0.43/0.27]?=-9999. Log abundance, [Mn/Fe] (1) 254-257 F4.2 [-] e_[Mn/Fe] [0/0.18]?=-9999. Uncertainty in [Mn/Fe] (1) 259-266 F8.2 [-] [Co/Fe] [-0.22/0.3]?=-9999. Log abundance, [Co/Fe] (1) 268-275 F8.2 [-] e_[Co/Fe] [0.01/0.12]?=-9999. Uncertainty in [Co/Fe] (1) 277-284 F8.2 [-] [Ni/Fe] [-0.19/0.22]?=-9999. Log abundance, [Ni/Fe] (1) 286-293 F8.2 [-] e_[Ni/Fe] [0.01/0.07]?=-9999. Uncertainty in [Ni/Fe] (1) 295-299 F5.2 [-] [Cu/Fe] [-0.33/0.35]?=-9999. Log abundance, [Cu/Fe] (1) 301-304 F4.2 [-] e_[Cu/Fe] [0/0.3]?=-9999. Uncertainty in [Cu/Fe] (1) 306-313 F8.2 [-] [Rb/Fe] [-0.46/0.28]?=-9999. Log abundance, [Rb/Fe] (1) 315-322 F8.2 [-] e_[Rb/Fe] [0/0.17]?=-9999. Uncertainty in [Rb/Fe] (1) 324-331 F8.2 [-] [Y/Fe] [-0.6/0.35]?=-9999. Log abundance, [Y/Fe] (1) 333-340 F8.2 [-] e_[Y/Fe] [0.01/0.21]?=-9999. Uncertainty in [Y/Fe] (1) -------------------------------------------------------------------------------- Note (1): Log of the abundance compared to iron, normalized to the solar abundances of Grevesse et al. (2007SSRv..130..105G 2007SSRv..130..105G). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Tiphaine Pouvreau [CDS] 04-Mar-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line