J/AJ/156/28  Properties for exoplanets with Spitzer light curves  (Adams+, 2018)

Reassessing exoplanet light curves with a thermal model. Adams A.D., Laughlin G. <Astron. J., 156, 28-28 (2018)> =2018AJ....156...28A 2018AJ....156...28A (SIMBAD/NED BibCode)
ADC_Keywords: Exoplanets ; Stars, masses ; Stars, diameters ; Effective temperatures ; Binaries, orbits Keywords: atmospheric effects - methods: data analysis - methods: numerical - planets and satellites: atmospheres - planets and satellites: gaseous planets - techniques: photometric Abstract: We present a uniform assessment of existing near-infrared Spitzer Space Telescope observations of planet-bearing stars. Using a simple four-parameter blackbody thermal model, we analyze stars for which photometry in at least one of Spitzer's IRAC bands has been obtained over either the entirety or a significant fraction of the planetary orbit. Systems in this category comprise 10 well-studied systems with hot Jupiters on circular or near-circular orbits (HAT-P-7, HD 149026, HD 189733, HD 209458, WASP-12, WASP-14, WASP-18, WASP-19, WASP-33, and WASP-43), as well as three stars harboring planets on significantly eccentric orbits (GJ 436, HAT-P-2, and HD 80606). We find that our simple model, in almost all cases, accurately reproduces the minimum and maximum planetary emission, as well as the phase offsets of these extrema with respect to transits/secondary eclipses. For one notable exception, WASP-12 b, adding an additional parameter to account for its tidal distortion is not sufficient to reproduce its photometric features. Full-orbit photometry is available in multiple wavelengths for 10 planets. We find that the returned parameter values for independent fits to each band are largely in agreement. However, disagreements in nightside temperature suggest distinct atmospheric layers, each with their own characteristic minimum temperature. In addition, a diversity in albedos suggests variation in the opacity of the photospheres. While previous works have pointed out trends in photometric features based on system properties, we cannot conclusively identify analogous trends for physical model parameters. To make the connection between full-phase data and physical models more robust, a higher signal-to-noise ratio must come from both increased resolution and a careful treatment of instrumental systematics. Description: For a selection of planets orbiting relatively bright parent stars, photometry in near-infrared bands has been obtained throughout the orbit; such data are referred to as light-curve observations. The Spitzer mission, during both its cryogenic and "warm" phases, has obtained spectra, eclipse, transit, or full-phase observations of over 100 planet-bearing stars (Han et al. 2014PASP..126..827H 2014PASP..126..827H). Spitzer's IRAC detector (Werner et al. 2004ApJS..154....1W 2004ApJS..154....1W) has operated in four wavelength channels centered at 3.6, 4.5, 5.8, and 8.0 µm. During the warm phase, only the 3.6 and 4.5 µm channels have been available. The infrared spectrograph (Houck et al. 2004ApJS..154...18H 2004ApJS..154...18H) has provided spectra, as well as photometry at 16 µm in the peak-up imaging mode, and the MIPS instrument (Rieke et al. 2004ApJS..154...25R 2004ApJS..154...25R) provides photometry in the mid- to far-infrared, particularly at 24 µm. However, all light curves analyzed in this work (listed in Section 2.2) were reduced and rebinned from data from the IRAC channels alone. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 146 12 Orbital and stellar properties for exoplanets with Spitzer light curves table2.dat 90 26 *Best-fit parameters from radiative model table4.dat 233 77 Eclipse properties for exoplanets with Spitzer light curves table5.dat 264 40 Transit properties for exoplanets with Spitzer light curves -------------------------------------------------------------------------------- Note on table2.dat: The parameter values from our blackbody model returning the most favorable likelihood from Markov chain Monte Carlo (MCMC) algorithms. -------------------------------------------------------------------------------- See also: J/AJ/133/1828 : Transit light curves of HD 189733 (Winn+, 2007) J/ApJS/168/297 : Stellar parameters of nearby cool stars (Takeda+, 2007) J/A+A/498/L5 : Photometry and spectroscopy of HD 80606b (Moutou+, 2009) J/A+A/502/695 : Observations of HD 80606 planetary system (Pont+, 2009) J/ApJ/707/167 : Transiting planetary system WASP-18 (Southworth+, 2009) J/A+A/516/A95 : Photometry and spectroscopy of HD 80606b (Hebrard+, 2010) J/A+A/526/L10 : Transits of WASP-33 (Herrero+, 2011) J/A+A/528/A65 : WASP-12b transits (Maciejewski+, 2011) J/ApJ/727/125 : Two secondary eclipses of WASP-12b with Spitzer (Campo+, 2011) J/A+A/542/A4 : WASP-43b thirty eclipses (Gillon+, 2012) J/ApJ/755/9 : Spitzer/IRAC light curves of GJ 436 system (Stevenson+, 2012) J/ApJ/757/161 : Spectroscopy of 56 exoplanet host stars (Torres+, 2012) J/MNRAS/419/2233 : HD 80606 transits (Colon+, 2012) J/A+A/551/A108 : Multi-site obs. of WASP-12 b transit (Maciejewski+, 2013) J/MNRAS/428/3671 : Transiting planet WASP-19b (Tregloan-Reed+, 2013) J/MNRAS/436/2 : Transits of WASP-19b (Mancini+, 2013) J/ApJ/785/126 : HIRES radial velocity measurements (Knutson+, 2014) J/A+A/588/L6 : WASP-12 transit light curves (Maciejewski+ 2016) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Planet Planet name 13- 25 F13.9 d Per [0.788838/111.4374] Period 27- 32 E6.2 d e_Per [4e-08/0.00072] Lower limit uncertainty in Per 34- 39 E6.2 d E_Per [4e-08/0.00072] Upper limit uncertainty in Per 41 A1 --- l_e [~] Limit flag on e 42- 48 F7.5 --- e [0/0.93286] Eccentricity 50- 56 F7.5 --- e_e [0.00055/0.0043]? Lower limit uncertainty in e 58- 64 F7.5 --- E_e [0.00055/0.014]? Upper limit uncertainty in e 66- 71 F6.2 deg omega [165/328]? Argument of periastron ω 73- 78 F6.2 deg e_omega [0.15/170]? Lower limit uncertainty in omega 80- 85 F6.2 deg E_omega [0.15/115]? Upper limit uncertainty in omega 87- 91 A5 --- Ref1 Reference(s) (1) 93- 97 F5.3 Msun M* [0.556/1.495] Stellar mass 99-103 F5.3 Msun e_M* [0.019/0.065] Lower limit uncertainty in M* 105-109 F5.3 Msun E_M* [0.019/0.08] Upper limit uncertainty in M* 111-115 F5.3 Rsun R* [0.455/1.84] Stellar radius 117-121 F5.3 Rsun e_R* [0.01/0.17] Lower limit uncertainty in R* 123-127 F5.3 Rsun E_R* [0.011/0.17] Upper limit uncertainty in R* 129-132 I4 K Teff [3416/7430] Effective temperature 134-136 I3 K e_Teff [43/120] Lower limit uncertainty in Teff 138-140 I3 K E_Teff [43/200] Upper limit uncertainty in Teff 142-146 A5 --- Ref2 Reference(s) (1) -------------------------------------------------------------------------------- Note (1): Reference as follows: 1 = Maciejewski et al. (2014AcA....64..323M 2014AcA....64..323M); 2 = von Braun et al. (2012ApJ...753..171V 2012ApJ...753..171V); 3 = Pal et al. (2010MNRAS.401.2665P 2010MNRAS.401.2665P); Lewis et al. (2013ApJ...766...95L 2013ApJ...766...95L); 4 = Wong et al. (2016ApJ...823..122W 2016ApJ...823..122W); 5 = Pal et al. (2008ApJ...680.1450P 2008ApJ...680.1450P) (M*, R*); 6 = Torres et al. (2012, J/ApJ/757/161) (Teff); 7 = Winn et al. (2009ApJ...703.2091W 2009ApJ...703.2091W); 8 = Hebrard et al. (2010, J/A+A/516/A95) (M*, R*); 9 = Moutou et al. (2009, J/A+A/498/L5) (Teff); 10 = Carter et al. (2009ApJ...696..241C 2009ApJ...696..241C); 11 = Baluev et al. (2015MNRAS.450.3101B 2015MNRAS.450.3101B); 12 = de Kok et al. (2013A&A...554A..82D 2013A&A...554A..82D) (M*); 13 = Boyajian et al. (2015MNRAS.447..846B 2015MNRAS.447..846B) (R*, Teff); 14 = Knutson et al. (2007ApJ...655..564K 2007ApJ...655..564K); 15 = Takeda et al. (2007, J/ApJS/168/297) (M*); 16 = Turner et al. (2016MNRAS.459..789T 2016MNRAS.459..789T) (Per, e); 17 = Knutson et al. (2014, J/ApJ/785/126) (ω); 18 = Enoch et al. (2010A&A...516A..33E 2010A&A...516A..33E); 19 = Hebb et al. (2009ApJ...693.1920H 2009ApJ...693.1920H); 20 = Wong et al. (2015ApJ...811..122W 2015ApJ...811..122W); 21 = Joshi et al. (2009MNRAS.392.1532J 2009MNRAS.392.1532J); 22 = Tregloan-Reed et al. (2013, J/MNRAS/428/3671) (M*, R*); 23 = Collier Cameron et al. (2010MNRAS.407..507C 2010MNRAS.407..507C); 24 = Gillon et al. (2012, J/A+A/542/A4). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Planet Planet name 13- 15 F3.1 um lambda [3.6/8] Wavelength λ 17- 20 F4.2 d P(PSR) [0.46/1.25] Pseudo-synchronous rotation period PPSR 22- 25 F4.2 d e_P(PSR) [0.01/0.37] Lower limit uncertainty in P(PSR) (1) 27- 30 F4.2 d E_P(PSR) [0/0.5] Upper limit uncertainty in P(PSR) (1) 32- 35 F4.2 d Prot [0.74/3.18] Rotation period 37- 40 F4.2 d e_Prot [0.01/0.71] Lower limit uncertainty in Prot (1) 42- 45 F4.2 d E_Prot [0/0.94] Upper limit uncertainty in Prot (1) 47- 50 F4.1 h taueq [0.3/97] Radiative timescale at a reference temperature given by the orbit-averaged equilibrium temperature Teq, τeq 52- 55 F4.1 h e_taueq [0/16.4] Lower limit uncertainty in taueq (1) 57- 60 F4.1 h E_taueq [0.3/34.7] Upper limit uncertainty in taueq (1) 62- 65 I4 K T0 [177/2336] Minimum ("nightside") temperature 67- 69 I3 K e_T0 [13/472] Lower limit uncertainty in T0 (1) 71- 74 I4 K E_T0 [10/1277] Upper limit uncertainty in T0 (1) 76 A1 --- l_A [<] Limit flag on A 77- 80 F4.2 --- A [0.01/0.85] Albedo (2) 82- 85 F4.2 --- e_A [0.01/0.16]? Lower limit uncertainty in A (1) 87- 90 F4.2 --- E_A [0.01/0.15]? Upper limit uncertainty in A (1) -------------------------------------------------------------------------------- Note (1): Uncertainties listed are 1σ ranges of a Metropolis-Hastings algorithm walk around the region of most favorable likelihood in parameter space. Note (2): Upper limits imply that the best-fit values are zero, with a 1σ uncertainty given by the upper limit. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Planet Planet name 13 A1 --- n_Planet [b] Note on Planet (G1) 15- 30 A16 --- Band Band(s) used for observation 32- 41 F10.5 d Emid [3346.52/5844.82]? Mid time of the eclipse (BJD-2450000) 43- 49 F7.5 d e_Emid [0.0001/0.012]? Lower limit uncertainty in Emid 51- 57 F7.5 d E_Emid [0.0001/0.012]? Upper limit uncertainty in Emid 58 A1 --- n_Emid [ab] Note on Emid (G1) 60- 66 F7.5 d E1-4 [0.04347/0.274]? Time of the total duration 68- 74 F7.5 d e_E1-4 [0.00021/0.01]? Lower limit uncertainty in E1-4 76- 82 F7.5 d E_E1-4 [0.00023/0.01]? Upper limit uncertainty in E1-4 84- 90 F7.5 d E1-2 [0.005/0.0195]? Time of ingress/egress (E1,2 = E3,4) 92- 98 F7.5 d e_E1-2 [0.0003/0.005]? Lower limit uncertainty in E1-2 100-106 F7.5 d E_E1-2 [0.0003/0.005]? Upper limit uncertainty in E1-2 108 A1 --- l_Depth [<] Limit flag on Depth 109-117 F9.7 --- Depth [6.93e-05/0.02542]? Eclipse depth 119-127 F9.7 --- e_Depth [6e-07/0.0012]? Lower limit uncertainty in Depth 129-137 F9.7 --- E_Depth [6e-07/0.0012]? Upper limit uncertainty in Depth 139-146 A8 --- n_Depth Note on Depth upper limit 148-192 A45 --- Ref Reference(s) 194-233 A40 --- Bibcode Bibcode of the reference(s) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Planet Planet name 13 A1 --- n_Planet [bc] Note on Planet (1) 15- 25 A11 --- Band Band(s) used for observation 27- 37 F11.6 d Tmid [2826.62/7089.11181]? Mid time of the transit (BJD-2450000) (2) 39- 46 F8.6 d e_Tmid [1.5e-05/0.011]? Lower limit uncertainty in Tmid 48- 55 F8.6 d E_Tmid [1.5e-05/0.011]? Upper limit uncertainty in Tmid 57 A1 --- n_Tmid [a] Note on Tmid (G1) 59- 65 F7.5 d T1-4 [0.0317/0.485]? Time of the total duration 67- 73 F7.5 d e_T1-4 [0.00016/0.013]? Lower limit uncertainty in T1-4 75- 81 F7.5 d E_T1-4 [0.00016/0.012]? Upper limit uncertainty in T1-4 83- 89 F7.5 d T1-2 [0.01044/0.1083]? Time of ingress/egress (T1,2 = T3,4) 91- 97 F7.5 d e_T1-2 [0.00014/0.0075]? Lower limit uncertainty in T1-2 99-105 F7.5 d E_T1-2 [0.00052/0.0075]? Upper limit uncertainty in T1-2 107-115 F9.7 --- Depth [0.00268/0.02542]? Transit depth 117-125 F9.7 --- e_Depth [4.7e-06/0.00071]? Lower limit uncertainty in Depth 127-135 F9.7 --- E_Depth [4.7e-06/0.00061]? Upper limit uncertainty in Depth 137-202 A66 --- Ref Reference(s) 204-264 A61 --- Bibcode Bibcode of the reference(s) -------------------------------------------------------------------------------- Note (1): Note as follows: b = Transit properties are from combined wavelength fits: c = Transit duration and ingress/egress times are calculated from the geometric relation described in Seager & Mallen-Ornelas (2003ApJ...585.1038S 2003ApJ...585.1038S) using the transit properties in Torres et al. (2008ApJ...677.1324T 2008ApJ...677.1324T). Note (2): Times are in BJD-2450000, unless otherwise noted. Where the source authors specify times with respect to the UTC and TDB systems (Eastman et al. 2010PASP..122..935E 2010PASP..122..935E), we choose to quote the TDB time. -------------------------------------------------------------------------------- Global notes: Note (G1): Note as follows: a = Times are in HJD-2450000; b = Knutson et al. (2012ApJ...754...22K 2012ApJ...754...22K) reported a combined secondary eclipse ephemeris. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Tiphaine Pouvreau [CDS] 17-Jan-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line