J/AJ/157/55       RVs and light curves for HATS-60-HATS-69      (Hartman+, 2019)
HATS-60b-HATS-69b: 10 transiting planets from HATSouth.
    Hartman J.D., Bakos G.A., Bayliss D., Bento J., Bhatti W., Brahm R.,
    Csubry Z., Espinoza N., Henning T., Jordan A., Mancini L., Penev K.,
    Rabus M., Sarkis P., Suc V., de Val-Borro M., Zhou G., Addison B.,
    Arriagada P., Butler R.P., Crane J., Durkan S., Shectman S., Tan T.G.,
    Thompson I., Tinney C.G., Wright D.J., Lazar J., Papp I., Sari P.
    <Astron. J., 157, 55 (2019)>
    =2019AJ....157...55H 2019AJ....157...55H    (SIMBAD/NED BibCode)
ADC_Keywords: Stars, dwarfs ; Stars, double and multiple ; Radial velocities ;
              Photometry ; Optical ; Exoplanets
Keywords: stars: individual - techniques: photometric -
          techniques: spectroscopic
Abstract:
    We report the discovery of 10 transiting extrasolar planets by the
    HATSouth survey. The planets range in mass from the super-Neptune HATS-62b,
    with Mp<0.179 MJ, to the super-Jupiter HATS-66b, with Mp=5.33 MJ,
    and in size from the Saturn HATS-69b, with Rp=0.94 RJ, to the inflated
    Jupiter HATS-67b, with Rp=1.69 RJ. The planets have orbital periods
    between 1.6092 days (HATS-67b) and 7.8180 days (HATS-61b). The hosts
    are dwarf stars with masses ranging from 0.89 M☉ (HATS-69) to
    1.56 M☉ (HATS-64) and have apparent magnitudes between
    V=12.276±0.020 mag (HATS-68) and V=14.095±0.030 mag (HATS-66). The
    super-Neptune HATS-62b is the least massive planet discovered to date
    with a radius larger than Jupiter. Based largely on the Gaia DR2 distances
    and broadband photometry, we identify three systems (HATS-62, HATS-64,
    and HATS-65) as having possible unresolved binary star companions. We
    discuss in detail our methods for incorporating the Gaia DR2 observations
    into our modeling of the system parameters and into our blend analysis
    procedures.
Description:
      Spectroscopic observations were carried out to confirm and characterize
    each of the transiting planet systems. The facilities used include FEROS
    on the MPG 2.2 m (all 10 targets, 138 observations total; Kaufer & Pasquini
    1998SPIE.3355..844K 1998SPIE.3355..844K), Coralie on the Euler 1.2 m (5 targets, 28 observations
    total; Queloz et al. 2001Msngr.105....1Q 2001Msngr.105....1Q), HARPS on the ESO 3.6 m
    (4 targets, 27 observations total; Mayor et al. 2003Msngr.114...20M 2003Msngr.114...20M), WiFeS
    on the ANU 2.3 m (5 targets, 18 observations total; Dopita et al.
    2007Ap&SS.310..255D 2007Ap&SS.310..255D), PFS on the Magellan 6.5 m (1 target, 10 observations;
    Crane et al. 2010SPIE.7735E..53C 2010SPIE.7735E..53C), UVES on the VLT UT2 8 m (3 targets,
    3 observations; Dekker et al. 2000SPIE.4008..534D 2000SPIE.4008..534D), and CYCLOPS on the
    AAT 3.9 m (1 target, 3 observations; Horton et al. 2012SPIE.8446E..3AH).
      Follow-up higher-precision ground-based photometric transits
    observations were obtained for all 10 systems. The facilities used for
    this purpose include the Chilean-Hungarian Automated Telescope (CHAT) 0.7 m
    telescope at Las Campanas Observatory, Chile (six transits of four targets;
    A. Jordan et al. 2018 in preparation); 1 m telescopes from the Las Cumbres
    Observatory (LCO) network, including units at McDonald Observatory (MCD)
    in Texas, at Cerro Telolo Inter-American Observatory (CTIO) in Chile,
    at Siding Spring Observatory (SSO) in Australia, and at the South African
    Astronomical Observatory (SAAO) in South Africa (21 transits of six targets
    altogether; Brown et al. 2013PASP..125.1031B 2013PASP..125.1031B); the 2 m Faulkes Telescope
    South (FTS) operated at SSO by LCO (one transit of one target); the SMARTS
    CTIO 0.9 m telescope (two transits of one target; Subasavage et al.
    2010SPIE.7737E..1CS); the 0.3 m Perth Exoplanet Survey Telescope in
    Australia (PEST; five transits of four targets); the Danish 1.54 m
    telescope at La Silla Observatory in Chile (one transit of one target;
    Andersen et al. 1995Msngr..79...12A 1995Msngr..79...12A); and the Swope 1 m telescope at
    Las Campanas Observatory in Chile (one transit of one target).
File Summary:
--------------------------------------------------------------------------------
 FileName      Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe            80        .   This file
table2.dat        35       10   Generalized Lomb-Scargle (GLS) search for
                                periodic signals in HATSouth light curves
table3.dat        57       10   Box-fitting least-squares (BLS) search for
                                additional transit signals in HATSouth light
                                curves
table5.dat        60      190   Relative radial velocities and bisector spans
                                for HATS-60-HATS-69
table6.dat        74   153037   Light curve data for HATS-60-HATS-69
--------------------------------------------------------------------------------
See also:
 J/A+A/580/A63 : HATS-13b and HATS-14b light and RV curves (Mancini+, 2015)
 J/AJ/155/79   : RV & light curves data for 4 G-type dwarf stars
                                                                (Henning+, 2018)
 J/AJ/155/112  : Radial velocities & light curves for HATS-43-HATS-46
                                                                  (Brahm+, 2018)
 J/AJ/156/216  : Differential photometry & RVs of HATS-59 (Sarkis+, 2018)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label    Explanations
--------------------------------------------------------------------------------
   1-  7  A7    ---     ID       System identifier (HATS-60-HATS-69)
   9- 19  F11.8 d       Per(GLS) [0.0127448/28.54] Peak period
  21- 25  F5.2  [-]     logFAP   [-3.7/-0.02] Log10 of false-alarm probability
  27- 30  F4.2  mmag    Amp      [0.32/1.1] Semi-amplitude
  32- 35  F4.2  mmag  E_Amp      [0.43/1.6] Semi-amplitude 95% upper limit
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label    Explanations
--------------------------------------------------------------------------------
   1-  7  A7    ---     ID       System identifier (HATS-60-HATS-69)
   9- 19  F11.8 d       Per(BLS) [0.11051/88.8988] Peak period
  21- 24  F4.2  mmag    Depth    [0.74/5.5] Transit depth
  26- 33  F8.5  d       Dur      [0.00309/10.3] Transit duration
  35- 37  F3.1  ---     S/N      [5.3/7.5] Signal-to-noise ratio
  39- 47  F9.7  d       Per      [1.60917/7.81796] Orbital period (from
                                  Tables 16-18 of this paper)
  49- 57  F9.7  d     e_Per      [1.6e-06/3.2e-05] Uncertainty in Per (from
                                  Tables 16-18 of this paper)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label Explanations
--------------------------------------------------------------------------------
   1-  7 A7     ---     ID    System identifier (HATS-60-HATS-69)
   9- 18 F10.5  d       BJD   [6056.30075/8041.87936] Barycentric Julian Date
                               (BJD-2450000)
  20- 26 F7.2   m/s     RV    [-730.32/764.58]? Radial velocity, arbitrary
                               zeropoint (1)
  28- 33 F6.2   m/s   e_RV    [7.9/107.5]? Uncertainty in RV (2)
  35- 40 F6.1   m/s     BS    [-727/854]? Spectral line bisector span
  42- 46 F5.1   m/s   e_BS    [11/215.4]? Uncertainty in BS
  48- 52 F5.3   ---     Phase [0.073/0.997] Phase
  54- 60 A7     ---     Inst  Instrument (3)
--------------------------------------------------------------------------------
Note (1): The zero-point of these velocities is arbitrary. An overall offset
  γrel fitted independently to the velocities from each instrument has
  been subtracted.
Note (2): Internal errors excluding the component of astrophysical jitter
  considered in Section 3.2.
Note (3): Instrument as follows:
  CYCLOPS = CYCLOPS on the AAT 3.9m;
  Coralie = Coralie on the Euler 1.2m;
    FEROS = FEROS on the MPG 2.2m;
    HARPS = HARPS on the ESO 3.6m;
      PFS = PFS on the Magellan 6.5m.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label Explanations
--------------------------------------------------------------------------------
   1-  7 A7     ---     ID    System identifier (HATS-60-HATS-69)
   9- 19 F11.5  d       BJD   [55091.47377/58079.77631] Barycentric Julian Date
                               (BJD-2400000; UTC) (1)
  21- 28 F8.5   mag     mag   [-0.06916/0.0491] Out-of-transit subtracted
                               magnitude (2)
  30- 36 F7.5   mag   e_mag   [0.0004/0.03592] Uncertainty in mag
  38- 45 F8.5   mag     omag  [-0.0152/14.3424]? Raw magnitude in Filt (3)
  47- 48 A2     ---     Filt  [R Rc griz] Filter used in the observation
  50- 74 A25    ---     Inst  Instrument used in the observation
--------------------------------------------------------------------------------
Note (1): Barycentric Julian Date is computed directly from the UTC time
  without correction for leap seconds.
Note (2): The out-of-transit level has been subtracted. For observations made
  with the HATSouth instruments (identified by "HS" in the "Inst" column) these
  magnitudes have been corrected for trends using the external parameter
  decorrelation (EPD) and trend filtering algorithm (TFA) procedures applied
  prior to fitting the transit model. This procedure may lead to an artificial
  dilution in the transit depths. The blend factors for the HATSouth light
  curves are listed in Table 14. For observations made with follow-up
  instruments (anything other than "HS" in the "Inst" column), the magnitudes
  have been corrected for a quadratic trend in time, and for variations
  correlated with up to three PSF shape parameters, fit simultaneously with the
  transit.
Note (3): Raw magnitude values without correction for the quadratic trend in
  time, or for trends correlated with the seeing. These are only reported for
  the follow-up observations.
--------------------------------------------------------------------------------
History:
    From electronic version of the journal
(End)            Prepared by [AAS], Tiphaine Pouvreau [CDS]          16-May-2019