J/AJ/158/239 Metal-rich host stars abundances & equivalent widths (Teske+, 2019)
Do metal-rich stars make metal-rich planets? New insights on giant planet
formation from host star abundances.
Teske J.K., Thorngren D., Fortney J.J., Hinkel N., Brewer J.M.
<Astron. J., 158, 239 (2019)>
=2019AJ....158..239T 2019AJ....158..239T (SIMBAD/NED BibCode)
ADC_Keywords: Populations, stellar ; Equivalent widths ; Abundances ;
Effective temperatures ; Stars, double and multiple ; Exoplanets
Keywords: High resolution spectroscopy - Exoplanet formation
Abstract:
The relationship between the compositions of giant planets and their host
stars is of fundamental interest in understanding planet formation.
The solar system giant planets are enhanced above solar composition in
metals, both in their visible atmospheres and bulk compositions. A key
question is whether the metal enrichment of giant exoplanets is correlated
with that of their host stars. Thorngren et al. (2016, J/ApJ/831/64) showed
that in cool (Teq<1000 K) giant exoplanets, the total heavy-element mass
increases with total Mp and the heavy-element enrichment relative to
the parent star decreases with total Mp. In their work, the host star
metallicity was derived from literature [Fe/H] measurements. Here we
conduct a more detailed and uniform study to determine whether different
host star metals (C, O, Mg, Si, Fe, and Ni) correlate with the bulk
metallicity of their planets, using correlation tests and Bayesian linear
fits. We present new host star abundances of 19 cool giant planet systems,
and combine these with existing host star data for a total of 22 cool giant
planet systems (24 planets). Surprisingly, we find no clear correlation
between stellar metallicity and planetary residual metallicity (the
relative amount of metal versus that expected from the planet mass alone),
which is in conflict with common predictions from formation models. We also
find a potential correlation between residual planet metals and stellar
volatile-to-refractory element ratios. These results provide intriguing
new relationships between giant planet and host star compositions for
future modeling studies of planet formation.
Description:
The list of candidate stars hosting relatively cool transiting giant
planets was constructed with the same selection criterion as used in
Thorngren et al. (2016, J/ApJ/831/64): Teq<1000 K (incident flux
<2x108 erg/s/cm2), 20 M⊕<M<20 MJ, and Mp and Rp
measured with errors =<50%.
The results presented here are based on the analysis of observations
from three echelle spectrographs: the High Resolution Echelle Spectrometer
(HIRES; Vogt et al. 1994SPIE.2198..362V 1994SPIE.2198..362V) on the 10 m Keck I telescope,
the Magellan Inamori Kyocera Echelle (MIKE) spectrograph (Bernstein et al.
2003SPIE.4841.1694B 2003SPIE.4841.1694B) on the 6.5 m Magellan II Telescope, and the High
Dispersion Spectrograph (HDS; Noguchi et al. 2002PASJ...54..855N 2002PASJ...54..855N) on the
8.2 m Subaru Telescope.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table4.dat 66 20 Stellar parameters
table5.dat 90 20 Stellar abundances of Fe, Mg, Si, and Ni
table6.dat 118 20 Stellar abundances of C and O
table3.dat 235 200 Measured lines & equivalent widths
--------------------------------------------------------------------------------
See also:
J/ApJS/169/430 : Atmospheric parameters of 1907 metal-rich stars
(Robinson+, 2007)
J/A+A/568/A25 : C and O abundances in stellar populations (Nissen+, 2014)
J/ApJ/831/64 : Mass-metallicity relation for giant planets (Thorngren+, 2016)
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Star Star name
12- 25 A14 --- OName Alternative name
27- 30 I4 K Teff [5006/6214] Effective temperature
32- 33 I2 K e_Teff [10/75] Uncertainty in Teff
35- 38 F4.2 [cm/s2] logg [3.55/4.63] Surface gravity
40- 43 F4.2 [cm/s2] e_logg [0.03/0.24] Uncertainty in logg
45- 49 F5.3 km/s Vt [1.17/2.34] Microturbulent velocity ξ
51- 55 F5.3 km/s e_Vt [0.03/0.23] Uncertainty in Vt
57- 61 F5.2 [-] [Fe/H] [-0.1/0.37] Metallicity
63- 66 F4.2 [-] e_[Fe/H] [0.01/0.11] Uncertainty in [Fe/H]
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Star Star name
12- 25 A14 --- OName Alternative name
27- 32 F6.3 [-] [FeI/H] [-0.096/0.371] FeI abundance
34- 38 F5.3 [-] e_[FeI/H] [0.028/0.141] Uncertainty in [FeI/H]
40- 45 F6.3 [-] [FeII/H] [-0.094/0.57] FeII abundance
47- 51 F5.3 [-] e_[FeII/H] [0.025/0.342] Uncertainty in [FeII/H]
53- 58 F6.3 [-] [Mg/H] [-0.102/0.437] Mg abundance
60- 64 F5.3 [-] e_[Mg/H] [0.006/0.06] Uncertainty in [Mg/H]
66- 71 F6.3 [-] [Si/H] [-0.099/0.42] Si abundance
73- 77 F5.3 [-] e_[Si/H] [0.008/0.048] Uncertainty in [Si/H]
79- 84 F6.3 [-] [Ni/H] [-0.164/0.458] Ni abundance
86- 90 F5.3 [-] e_[Ni/H] [0.009/0.052] Uncertainty in [Ni/H]
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Star Star name
12- 25 A14 --- OName Alternative name
27- 32 F6.3 [-] [C/H] [-0.156/0.27] C abundance
34- 38 F5.3 [-] e_[C/H] [0.016/0.164] Uncertainty in [C/H]
39 A1 --- ne[C/H] [ab] Note on e_[C/H] (1)
41- 46 F6.3 [-] [C/H]C2 [-0.22/0.36]? C abundance from C2 Swan
lines (5086 and 5135 Å)
48- 53 F6.3 [-] [C/H]avg [-0.188/0.29]? Average C abundance
55- 59 F5.3 [-] [C/H]sp [0.001/0.191]? Spread in [C/H]
61- 66 F6.3 [-] [O/H]forb [-0.147/0.284]? Oxygen forbidden-line
(6300Å) abundance
68- 72 F5.3 [-] e_[O/H]forb [0.015/0.084]? Uncertainty in [O/H]forb
74- 79 F6.3 [-] [O/H]forbs [-0.11/0.36]? Oxygen forbidden-line
(6300Å) abundance from synthetic
spectrum
81- 86 F6.3 [-] [O/H]tri [-0.074/0.286]? O abundance from the OI
triplet (2)
88- 92 F5.3 [-] e_[O/H]tri [0.011/0.108]? Uncertainty in [O/H]tri
93 A1 --- ne[O/H]tri [a] Note on e_[O/H]tri (1)
95-100 F6.3 [-] [O/H]avg [-0.085/0.31]? Average O abundance
102-106 F5.3 [-] [O/H]qse [0.017/0.08]? [O/H] quadrature sum error
108-112 F5.3 [-] [O/H]sp [0.001/0.224]? Spread in [O/H]
114-118 A5 --- Label Label of star in Table 3
--------------------------------------------------------------------------------
Note (1): Note as follows:
a = Error increased to include potential systematic error induced by measuring
a limited number of abundance indicators. See the appendix for further
details;
b = Error conservatively estimated from [C/Fe] vs. [Fe/H] relation in the
study by Nissen et al. (2014, J/A+A/568/A25) of solar twins.
Note (2): All values reflect NLTE corrections.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- Ion Ion
7- 14 F8.3 0.1nm Wave [4389.24/7797.59] Wavelength (Å)
16 A1 --- f_Wave [b] b for blends
18- 22 F5.1 --- Species [6/606] Species
24- 30 F7.4 eV ExPot [0/22.2]? Excitation potential
32- 37 F6.3 [-] log(gf) [-9.717/0.37]? Log of the oscillator strength
39- 44 F6.2 10-13m EW-VH1 [5/125.3]? Equivalent width of Vesta-HIRES
(mÅ)
46- 51 F6.2 10-13m EW-HP15 [7.2/130.7]? Equivalent width of HAT-P-15
(mÅ)
53- 58 F6.2 10-13m EW-HP17 [6.5/132]? Equivalent width of HAT-P-17
(mÅ)
60- 66 F7.3 10-13m EW-K89 [2.7/128.3]? Equivalent width of Kepler-89
(mÅ)
68- 73 F6.2 10-13m EW-VM1 [5.4/116.6]? Equivalent width of Vesta-MIKE
(mÅ)
75- 80 F6.2 10-13m EW-W8 [8.2/149.8]? Equivalent width of WASP-8
(mÅ)
82- 87 F6.2 10-13m EW-VM2 [5.4/123]? Equivalent width of Vesta-MIKE
(mÅ)
89- 94 F6.2 10-13m EW-W84 [6/168.3]? Equivalent width of WASP-84 (mÅ)
96-100 F5.1 10-13m EW-VH2 [5/116.5]? Equivalent width of Vesta-HIRES
(mÅ)
102-106 F5.1 10-13m EW-K419 [7.3/150.8]? Equivalent width of Kepler-419
(mÅ)
108-112 F5.1 10-13m EW-K432 [12.5/156.2]? Equivalent width of Kepler-432
(mÅ)
114-117 F4.1 10-13m EW-MH [5.4/83.9]? Equivalent width of Moon-HDS
(mÅ)
119-123 F5.1 10-13m EW-80606 [9.8/102.1]? Equivalent width of HD80606
(mÅ)
125-130 F6.2 10-13m EW-VH3 [5.6/115.6]? Equivalent width of Vesta-HIRES
(mÅ)
132-137 F6.2 10-13m EW-K145 [6.2/111.5]? Equivalent width of Kepler-145
(mÅ)
139-144 F6.2 10-13m EW-K539 [5.6/113]? Equivalent width of Kepler-539
(mÅ)
146-151 F6.2 10-13m EW-K277 [8.35/109.3]? Equivalent width of Kepler-277
(mÅ)
153-158 F6.2 10-13m EW-C9 [5.8/111.6]? Equivalent width of CoRoT-9
(mÅ)
160-165 F6.2 10-13m EW-IM1 [8.42/118.5]? Equivalent width of Iris-MIKE
(mÅ)
167-172 F6.2 10-13m EW-K2139 [8.4/169.9]? Equivalent width of K2-139
(mÅ)
174-179 F6.2 10-13m EW-VH4 [5.6/116.6]? Equivalent width of Vesta-HIRES
(mÅ)
181-186 F6.2 10-13m EW-K219 [6.3/151.5]? Equivalent width of K2-19 (mÅ)
188-193 F6.2 10-13m EW-K227 [5.8/156.8]? Equivalent width of K2-27 (mÅ)
195-200 F6.2 10-13m EW-K9 [6.2/121.2]? Equivalent width of Kepler-9
(mÅ)
202-207 F6.2 10-13m EW-IM2 [5.7/118.2]? Equivalent width of Iris-MIKE
(mÅ)
209-214 F6.2 10-13m EW-K224 [8.82/150.8]? Equivalent width of K2-24
(mÅ)
216-221 F6.2 10-13m EW-W130 [8.73/211.7]? Equivalent width of WASP-130
(mÅ)
223-228 F6.2 10-13m EW-W139 [8/147.7]? Equivalent width of WASP-139
(mÅ)
230-235 F6.2 10-13m EW-W29 [8.52/170.6]? Equivalent width of WASP-29
(mÅ)
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Tiphaine Pouvreau [CDS] 29-Jan-2020