J/AJ/158/239 Metal-rich host stars abundances & equivalent widths (Teske+, 2019)

Do metal-rich stars make metal-rich planets? New insights on giant planet formation from host star abundances. Teske J.K., Thorngren D., Fortney J.J., Hinkel N., Brewer J.M. <Astron. J., 158, 239 (2019)> =2019AJ....158..239T 2019AJ....158..239T (SIMBAD/NED BibCode)
ADC_Keywords: Populations, stellar ; Equivalent widths ; Abundances ; Effective temperatures ; Stars, double and multiple ; Exoplanets Keywords: High resolution spectroscopy - Exoplanet formation Abstract: The relationship between the compositions of giant planets and their host stars is of fundamental interest in understanding planet formation. The solar system giant planets are enhanced above solar composition in metals, both in their visible atmospheres and bulk compositions. A key question is whether the metal enrichment of giant exoplanets is correlated with that of their host stars. Thorngren et al. (2016, J/ApJ/831/64) showed that in cool (Teq<1000 K) giant exoplanets, the total heavy-element mass increases with total Mp and the heavy-element enrichment relative to the parent star decreases with total Mp. In their work, the host star metallicity was derived from literature [Fe/H] measurements. Here we conduct a more detailed and uniform study to determine whether different host star metals (C, O, Mg, Si, Fe, and Ni) correlate with the bulk metallicity of their planets, using correlation tests and Bayesian linear fits. We present new host star abundances of 19 cool giant planet systems, and combine these with existing host star data for a total of 22 cool giant planet systems (24 planets). Surprisingly, we find no clear correlation between stellar metallicity and planetary residual metallicity (the relative amount of metal versus that expected from the planet mass alone), which is in conflict with common predictions from formation models. We also find a potential correlation between residual planet metals and stellar volatile-to-refractory element ratios. These results provide intriguing new relationships between giant planet and host star compositions for future modeling studies of planet formation. Description: The list of candidate stars hosting relatively cool transiting giant planets was constructed with the same selection criterion as used in Thorngren et al. (2016, J/ApJ/831/64): Teq<1000 K (incident flux <2x108 erg/s/cm2), 20 M<M<20 MJ, and Mp and Rp measured with errors =<50%. The results presented here are based on the analysis of observations from three echelle spectrographs: the High Resolution Echelle Spectrometer (HIRES; Vogt et al. 1994SPIE.2198..362V 1994SPIE.2198..362V) on the 10 m Keck I telescope, the Magellan Inamori Kyocera Echelle (MIKE) spectrograph (Bernstein et al. 2003SPIE.4841.1694B 2003SPIE.4841.1694B) on the 6.5 m Magellan II Telescope, and the High Dispersion Spectrograph (HDS; Noguchi et al. 2002PASJ...54..855N 2002PASJ...54..855N) on the 8.2 m Subaru Telescope. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table4.dat 66 20 Stellar parameters table5.dat 90 20 Stellar abundances of Fe, Mg, Si, and Ni table6.dat 118 20 Stellar abundances of C and O table3.dat 235 200 Measured lines & equivalent widths -------------------------------------------------------------------------------- See also: J/ApJS/169/430 : Atmospheric parameters of 1907 metal-rich stars (Robinson+, 2007) J/A+A/568/A25 : C and O abundances in stellar populations (Nissen+, 2014) J/ApJ/831/64 : Mass-metallicity relation for giant planets (Thorngren+, 2016) Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Star Star name 12- 25 A14 --- OName Alternative name 27- 30 I4 K Teff [5006/6214] Effective temperature 32- 33 I2 K e_Teff [10/75] Uncertainty in Teff 35- 38 F4.2 [cm/s2] logg [3.55/4.63] Surface gravity 40- 43 F4.2 [cm/s2] e_logg [0.03/0.24] Uncertainty in logg 45- 49 F5.3 km/s Vt [1.17/2.34] Microturbulent velocity ξ 51- 55 F5.3 km/s e_Vt [0.03/0.23] Uncertainty in Vt 57- 61 F5.2 [-] [Fe/H] [-0.1/0.37] Metallicity 63- 66 F4.2 [-] e_[Fe/H] [0.01/0.11] Uncertainty in [Fe/H] -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Star Star name 12- 25 A14 --- OName Alternative name 27- 32 F6.3 [-] [FeI/H] [-0.096/0.371] FeI abundance 34- 38 F5.3 [-] e_[FeI/H] [0.028/0.141] Uncertainty in [FeI/H] 40- 45 F6.3 [-] [FeII/H] [-0.094/0.57] FeII abundance 47- 51 F5.3 [-] e_[FeII/H] [0.025/0.342] Uncertainty in [FeII/H] 53- 58 F6.3 [-] [Mg/H] [-0.102/0.437] Mg abundance 60- 64 F5.3 [-] e_[Mg/H] [0.006/0.06] Uncertainty in [Mg/H] 66- 71 F6.3 [-] [Si/H] [-0.099/0.42] Si abundance 73- 77 F5.3 [-] e_[Si/H] [0.008/0.048] Uncertainty in [Si/H] 79- 84 F6.3 [-] [Ni/H] [-0.164/0.458] Ni abundance 86- 90 F5.3 [-] e_[Ni/H] [0.009/0.052] Uncertainty in [Ni/H] -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Star Star name 12- 25 A14 --- OName Alternative name 27- 32 F6.3 [-] [C/H] [-0.156/0.27] C abundance 34- 38 F5.3 [-] e_[C/H] [0.016/0.164] Uncertainty in [C/H] 39 A1 --- ne[C/H] [ab] Note on e_[C/H] (1) 41- 46 F6.3 [-] [C/H]C2 [-0.22/0.36]? C abundance from C2 Swan lines (5086 and 5135 Å) 48- 53 F6.3 [-] [C/H]avg [-0.188/0.29]? Average C abundance 55- 59 F5.3 [-] [C/H]sp [0.001/0.191]? Spread in [C/H] 61- 66 F6.3 [-] [O/H]forb [-0.147/0.284]? Oxygen forbidden-line (6300Å) abundance 68- 72 F5.3 [-] e_[O/H]forb [0.015/0.084]? Uncertainty in [O/H]forb 74- 79 F6.3 [-] [O/H]forbs [-0.11/0.36]? Oxygen forbidden-line (6300Å) abundance from synthetic spectrum 81- 86 F6.3 [-] [O/H]tri [-0.074/0.286]? O abundance from the OI triplet (2) 88- 92 F5.3 [-] e_[O/H]tri [0.011/0.108]? Uncertainty in [O/H]tri 93 A1 --- ne[O/H]tri [a] Note on e_[O/H]tri (1) 95-100 F6.3 [-] [O/H]avg [-0.085/0.31]? Average O abundance 102-106 F5.3 [-] [O/H]qse [0.017/0.08]? [O/H] quadrature sum error 108-112 F5.3 [-] [O/H]sp [0.001/0.224]? Spread in [O/H] 114-118 A5 --- Label Label of star in Table 3 -------------------------------------------------------------------------------- Note (1): Note as follows: a = Error increased to include potential systematic error induced by measuring a limited number of abundance indicators. See the appendix for further details; b = Error conservatively estimated from [C/Fe] vs. [Fe/H] relation in the study by Nissen et al. (2014, J/A+A/568/A25) of solar twins. Note (2): All values reflect NLTE corrections. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- Ion Ion 7- 14 F8.3 0.1nm Wave [4389.24/7797.59] Wavelength (Å) 16 A1 --- f_Wave [b] b for blends 18- 22 F5.1 --- Species [6/606] Species 24- 30 F7.4 eV ExPot [0/22.2]? Excitation potential 32- 37 F6.3 [-] log(gf) [-9.717/0.37]? Log of the oscillator strength 39- 44 F6.2 10-13m EW-VH1 [5/125.3]? Equivalent width of Vesta-HIRES (mÅ) 46- 51 F6.2 10-13m EW-HP15 [7.2/130.7]? Equivalent width of HAT-P-15 (mÅ) 53- 58 F6.2 10-13m EW-HP17 [6.5/132]? Equivalent width of HAT-P-17 (mÅ) 60- 66 F7.3 10-13m EW-K89 [2.7/128.3]? Equivalent width of Kepler-89 (mÅ) 68- 73 F6.2 10-13m EW-VM1 [5.4/116.6]? Equivalent width of Vesta-MIKE (mÅ) 75- 80 F6.2 10-13m EW-W8 [8.2/149.8]? Equivalent width of WASP-8 (mÅ) 82- 87 F6.2 10-13m EW-VM2 [5.4/123]? Equivalent width of Vesta-MIKE (mÅ) 89- 94 F6.2 10-13m EW-W84 [6/168.3]? Equivalent width of WASP-84 (mÅ) 96-100 F5.1 10-13m EW-VH2 [5/116.5]? Equivalent width of Vesta-HIRES (mÅ) 102-106 F5.1 10-13m EW-K419 [7.3/150.8]? Equivalent width of Kepler-419 (mÅ) 108-112 F5.1 10-13m EW-K432 [12.5/156.2]? Equivalent width of Kepler-432 (mÅ) 114-117 F4.1 10-13m EW-MH [5.4/83.9]? Equivalent width of Moon-HDS (mÅ) 119-123 F5.1 10-13m EW-80606 [9.8/102.1]? Equivalent width of HD80606 (mÅ) 125-130 F6.2 10-13m EW-VH3 [5.6/115.6]? Equivalent width of Vesta-HIRES (mÅ) 132-137 F6.2 10-13m EW-K145 [6.2/111.5]? Equivalent width of Kepler-145 (mÅ) 139-144 F6.2 10-13m EW-K539 [5.6/113]? Equivalent width of Kepler-539 (mÅ) 146-151 F6.2 10-13m EW-K277 [8.35/109.3]? Equivalent width of Kepler-277 (mÅ) 153-158 F6.2 10-13m EW-C9 [5.8/111.6]? Equivalent width of CoRoT-9 (mÅ) 160-165 F6.2 10-13m EW-IM1 [8.42/118.5]? Equivalent width of Iris-MIKE (mÅ) 167-172 F6.2 10-13m EW-K2139 [8.4/169.9]? Equivalent width of K2-139 (mÅ) 174-179 F6.2 10-13m EW-VH4 [5.6/116.6]? Equivalent width of Vesta-HIRES (mÅ) 181-186 F6.2 10-13m EW-K219 [6.3/151.5]? Equivalent width of K2-19 (mÅ) 188-193 F6.2 10-13m EW-K227 [5.8/156.8]? Equivalent width of K2-27 (mÅ) 195-200 F6.2 10-13m EW-K9 [6.2/121.2]? Equivalent width of Kepler-9 (mÅ) 202-207 F6.2 10-13m EW-IM2 [5.7/118.2]? Equivalent width of Iris-MIKE (mÅ) 209-214 F6.2 10-13m EW-K224 [8.82/150.8]? Equivalent width of K2-24 (mÅ) 216-221 F6.2 10-13m EW-W130 [8.73/211.7]? Equivalent width of WASP-130 (mÅ) 223-228 F6.2 10-13m EW-W139 [8/147.7]? Equivalent width of WASP-139 (mÅ) 230-235 F6.2 10-13m EW-W29 [8.52/170.6]? Equivalent width of WASP-29 (mÅ) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Tiphaine Pouvreau [CDS] 29-Jan-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line