J/AJ/159/63  New AO obs. of exoplanets & brown dwarf companions  (Bowler+, 2020)

Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels. Bowler B.P., Blunt S.C., Nielsen E.L. <Astron. J., 159, 63 (2020)> =2020AJ....159...63B 2020AJ....159...63B
ADC_Keywords: Exoplanets; Stars, brown dwarf; Stars, masses; Spectral types; Stars, ages; Infrared; References Keywords: Exoplanet formation ; Brown dwarfs ; Extrasolar gas giants Abstract: The orbital eccentricities of directly imaged exoplanets and brown dwarf companions provide clues about their formation and dynamical histories. We combine new high-contrast imaging observations of substellar companions obtained primarily with Keck/NIRC2 together with astrometry from the literature to test for differences in the population-level eccentricity distributions of 27 long-period giant planets and brown dwarf companions between 5 and 100au using hierarchical Bayesian modeling. Orbit fits are performed in a uniform manner for companions with short orbital arcs; this typically results in broad constraints for individual eccentricity distributions, but together as an ensemble, these systems provide valuable insight into their collective underlying orbital patterns. The shape of the eccentricity distribution function for our full sample of substellar companions is approximately flat from e=0-1. When subdivided by companion mass and mass ratio, the underlying distributions for giant planets and brown dwarfs show significant differences. Low mass ratio companions preferentially have low eccentricities, similar to the orbital properties of warm Jupiters found with radial velocities and transits. We interpret this as evidence for in situ formation on largely undisturbed orbits within massive extended disks. Brown dwarf companions exhibit a broad peak at e∼0.6-0.9 with evidence for a dependence on orbital period. This closely resembles the orbital properties and period-eccentricity trends of wide (1-200au) stellar binaries, suggesting that brown dwarfs in this separation range predominantly form in a similar fashion. We also report evidence that the "eccentricity dichotomy" observed at small separations extends to planets on wide orbits: the mean eccentricity for the multi-planet system HR8799 is lower than for systems with single planets. In the future, larger samples and continued astrometric orbit monitoring will help establish whether these eccentricity distributions correlate with other parameters such as stellar host mass, multiplicity, and age. Description: HD49197 was targeted using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) near-infrared imager coupled with the AO188 adaptive optic (AO) system at Subaru Telescope on UT 2011 December 28 (see Table 1 for details). A total of 60 frames was acquired in Ks band, each with an integration time of 30s. In total, we targeted 13 sources with substellar companions between 2014 and 2019 (see Table 1) with the NIRC2 camera behind natural guide star AO at Keck Observatory. All observations were acquired with the narrow camera mode, which provides a plate scale of ∼10mas/pix and a field of view of 10.2"x10.2". Total on-source integration times ranged from 3 to 81 minutes and the field-of-view rotation angle ranged from 3° to 119°. Finally, these new imaging observations of substellar companions were combined with astrometry from the literature; see Table 8. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 108 18 Observations and astrometry of substellar companions table3.dat 230 22 Results from orbit fits table4.dat 201 27 Sample of substellar companions between 2 and 75MJup and 5-100au exhibiting orbital motion table5.dat 94 27 Summary of individual eccentricity distributions companions table8.dat 95 215 Literature astrometry refs.dat 68 62 References for Table 4 -------------------------------------------------------------------------------- See also: I/345 : Gaia DR2 (Gaia Collaboration, 2018) J/ApJ/637/1067 : Near-IR spectral classification T dwarfs (Burgasser+,2006) J/ApJ/703/1511 : Wide binaries in Taurus and Upper Sco (Kraus+, 2009) J/ApJS/181/62 : Survey of young solar analogs (Metchev+, 2009) J/ApJ/693/1084 : Ten new and updated multiplanet systems (Wright+, 2009) J/ApJS/190/1 : A survey of stellar families (Raghavan+, 2010) J/ApJ/725/331 : Astrometry in the Galactic Center (Yelda+, 2010) J/AJ/144/62 : Tertiary companions spectroscopic binaries (Allen+, 2012) J/ApJ/754/44 : The AstraLux Large M-dwarf Survey (Janson+ 2012) J/ApJ/758/56 : Young M dwarfs within 25pc. II. (Shkolnik+, 2012) J/ApJ/745/174 : Evolution models young gas-giant planets (Spiegel+, 2012) J/ApJ/771/129 : Submillimetric Class II sources of Taurus (Andrews+, 2013) J/ApJ/762/88 : Young stellar kinematic group candidate (Malo+, 2013) J/A+A/551/A36 : Metallicity of M dwarfs. III. (Neves+, 2013) J/A+A/562/A127 : Near-IR integral spectra of 15 M-L dwarfs (Bonnefoy+,2014) J/ApJS/211/25 : Spitzer/IRS debris disk catalog. I. (Chen+, 2014) J/ApJ/792/119 : Companions nearby stars from Pan-STARRS 1 (Deacon+, 2014) J/ApJ/795/64 : Catalog exoplanet physical param. (Foreman-Mackey+, 2014) J/ApJS/214/17 : Orbital monitoring of AstraLux binaries (Janson+, 2014) J/ApJS/216/7 : Planets Around Low-Mass Stars (PALMS). IV. (Bowler+, 2015) J/other/Sci/350.64 : 51 Eri b near-infrared spectrum (Macintosh+, 2015) J/MNRAS/449/2618 : (MinMs) survey. I. (Ward-Duong+, 2015) J/ApJS/225/32 : Extended abundance analysis of cool stars (Brewer+, 2016) J/ApJ/821/89 : 12yrs radial velocity obs. exoplanet systems (Bryan+,2016) J/A+A/594/A63 : International Deep Planet Survey results (Galicher+, 2016) J/ApJS/224/2 : K2 EPIC stellar properties 138600 targets (Huber+, 2016) J/MNRAS/456/2070 : Eccentricity distribution wide binaries (Tokovinin+, 2016) J/ApJ/825/19 : Mass-rad. relation for planets with Rp<4 (Wolfgang+, 2016) J/A+A/605/L9 : NIR spectrum of exoplanet HIP 65426b (Chauvin+, 2017) J/A+A/604/A108 : UniDAM results (Mints+, 2017) J/AJ/155/159 : RVs of the late-T dwarf GL 758 B host star (Bowler+, 2018) J/AJ/155/180 : A catalog of cool dwarf targets TESS (Muirhead+, 2018) J/AJ/156/286 : The LEECH exoplanet imaging survey (Stone+, 2018) J/AJ/158/77 : Candidates & memb. Pisces-Eridanus stream (Curtis+, 2019) J/A+A/623/A72 : Binarity of Hipparcos stars Gaia anomaly (Kervella+, 2019) J/A+A/624/A118 : Fitted orbits and parameters of 51 Eridani b (Maire+,2019) J/AJ/158/13 : The first 300 stars observed by the GPIES (Nielsen+, 2019) J/AJ/157/71 : Keck/NIRC2 astrometry for GSC 6214-210 b (Pearce+, 2019) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- ID Target identification 17- 29 A13 --- Tel Telescope used (Keck/NIRC2, 17 occurrences or Subaru/HiCIAO, 1 occurrence) 31- 34 I4 yr Obs.Y [2011/2019] UT year of observation 36- 38 A3 "month" Obs.M UT month of observation 40- 41 I2 d Obs.D UT day of observation 43- 50 F8.3 --- Epoch [2011/2020] Epoch of observation 52- 54 A3 --- Filt Filter used (H or KS) 56- 61 A6 --- Cor Coronograph used 63- 65 I3 --- Nf [3/160] Number of frames 67- 69 I3 --- Coadd [1/100] Coadds 71- 76 F6.3 s Exp [0.01/60] Exposition time 78- 80 I3 deg theta [3/119]? Rotation angle (θ) 82- 87 F6.1 mas Sep [361/5609] Separation (ρ) 89- 92 F4.1 mas e_Sep [1.7/15] Error on Sep 94- 99 F6.2 deg PA [19/354] Position angle 101-104 F4.2 deg e_PA [0.1/0.7] Error on PA 106-108 I3 --- S/N [9/816] Signal to noise ratio of the companion detection -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- ID Target identification 17- 24 F8.3 yr Per [13/7460] Median period 27- 34 F8.3 yr e_Per [0.01/4800] 68.3% c.i. Negative error on Per 37- 43 F7.2 yr E_Per [0.02/3200] 68.3% c.i. Positive error on Per 45- 51 F7.2 yr b_Per [13/2360] 95.4% c.i. minimum period 53- 60 F8.2 yr B_Per [13/59800] 95.4% c.i. maximum period 62- 67 F6.2 au a [4/417] Median semi major axis 70- 77 F8.4 au e_a [0.009/160] 68.3% c.i. Negative error on a68 80- 87 F8.4 au E_a [0.009/100] 68.3% c.i. Positive error on a68 89- 94 F6.2 au b_a [4/201] 95.4% c.i minimum semi major axis 96-102 F7.2 au B_a [4/1320] 95.4% c.i. maximum semi major axis 104-109 F6.4 --- e [0.14/0.94] Median eccentricity 112-116 F5.3 --- e_e [0.001/0.5] 68.3% c.i. Negative error on e68 119-123 F5.3 --- E_e [0.001/0.42] 68.3% c.i. Positive error on e68 125-130 F6.4 --- b_e [0/0.86] 95.4% c.i. minimum eccentricity 132-136 F5.3 --- B_e [0.24/1] 95.4% c.i. maximum eccentricity 138-142 F5.1 deg inc [79/151] Median inclination 145-149 F5.2 deg e_inc [0.1/40] 68.3% c.i. Negative error on i68 152-156 F5.2 deg E_inc [0.1/38] 68.3% c.i. Positive error on i68 158-162 F5.1 deg b_inc [15/130] 95.4% c.i. minimum inclination 164-168 F5.1 deg B_inc [87/177] 95.4% c.i. minimum inclination 170-174 F5.1 deg omega [48/168] Argument of periastron (ω) (1) 177-181 F5.2 deg e_omega [0.3/87] Negative error on omega 184-188 F5.2 deg E_omega [0.4/74] Positive error on omega 190-194 F5.1 deg OMEGA [12/329] Ascending node (Ω) (1) 197-201 F5.2 deg e_OMEGA [0.1/76] Negative error on OMEGA 204-209 F6.2 deg E_OMEGA [0.1/100] Positive error on OMEGA 211-216 F6.4 --- Tau [0.04/0.99] Time of periastron passage (τ) (2) 219-223 F5.3 --- e_Tau [0.01/0.5] Negative error on Tau 226-230 F5.3 --- E_Tau [0.01/0.5] Positive error on Tau -------------------------------------------------------------------------------- Note (1): Here ω amd Ω are defined on the interval [0,2π). Note (2): Time of periastron passage is expressed as a fraction of the orbital period after MJD=0. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- ID Target identification (1) 17- 18 I2 h RAh [0/23] Hour of right ascension (J2000) 20- 21 I2 min RAm Minute of right ascension (J2000) 23- 27 F5.2 s RAs Second of right ascension (J2000) 29 A1 --- DE- [-+] Sign of declination (J2000) 30- 31 I2 deg DEd Degree of declination (J2000) 33- 34 I2 arcmin DEm Arcminute of declination (J2000) 36- 40 F5.2 arcsec DEs Arcsecond of declination (J2000) 42- 43 A2 --- SpT* Spectral type of the host star 45- 48 I4 Myr Agemin [30/6000]? Minimum estimated age 50- 54 I5 Myr Agemax [125/10000]? Maximum estimated age 56- 59 I4 Myr Age [5/5000]? Estimated age 62- 65 I4 Myr e_Age [1/1900]? Negative error on Age 67- 71 I5 Myr E_Age [1/2300]? Positive error on Age 73- 80 F8.4 mas plx [7/174] Parallaxe from Gaia DR2 (π) 82- 87 F6.4 mas e_plx [0.02/0.35] Error on plx 89- 92 F4.2 Msun M* [0.2/2.8] Stellar mass 95- 98 F4.2 Msun e_M* [0.02/0.2]? Negative error on M* 101-104 F4.2 Msun E_M* [0.02/0.2] Positive error on M* 106 A1 --- f_M* [a] Flag on M* (2) 108-109 I2 Mjup Mcmin [4/40]? Minimum companion mass (3) 111-112 I2 Mjup Mcmax [10/94]? Maximum companion mass (3) 114-117 F4.1 Mjup Mc [2/73]? Companion mass (3) 120-123 F4.1 Mjup e_Mc [0.8/21]? Negative error on Mc 126-129 F4.1 Mjup E_Mc [0.8/14]? Positive error on Mc 131-135 F5.2 10-2 M2/M1 [0.1/17] Mass ratio between the companion and host star 138-141 F4.2 10-2 e_M2/M1 [0.05/5] Negative error on M2/M1 144-147 F4.2 10-2 E_M2/M1 [0.05/5] Positive error on M2/M1 149-156 A8 --- SpTc Companion spectral type 159-161 F3.1 --- e_SpTc [0.5/1.5]? Negative error on SpTc 164-166 F3.1 --- E_SpTc [0.5/1.5]? Positive error on SpTc 168-171 F4.2 arcsec Sep [0.2/6.8] Separation in arcsec 173-175 I3 au Sepau [9/100] Separation in au 177-180 F4.2 --- IWA/a [0.08/1.6] Ratio between inner working angle and semi-major axis (4) 182-186 F5.3 --- dt/Per [0.002/0.53] Fractional orbital coverage (Δt/P) (5) 188-201 A14 --- Ref Reference(s) (see refs.dat file) -------------------------------------------------------------------------------- Note (1): In the case of GJ504B, Bonnefoy+ (2018A&A...618A..63B 2018A&A...618A..63B) find two degenerate solutions for the host age (21±2Myr or 4.0±1.8Gyr), which results in two solutions for the companion mass 1.3-0.3+0.6 or 23-9+10MJup) and mass ratio (0.11±0.04x10-2 or 1.8±0.8x10-2). For this study we adopt the older age and correspondingly higher companion mass. Note (2): Flag as follows: a = Uncertainty in the host mass is approximated from multiple assessments in the literature (Meshkat+, 2013ApJ...775L..40M 2013ApJ...775L..40M ; Chen+, 2014, J/ApJS/211/25). Note (3): Assumes hot-start cooling history. Note (4): IWA/a refers to the inner working angle at the contrast of the companion and at the time of discovery, divided by the maximum a posteriori of the semimajor axis distribution. The IWA was visually estimated based on the discovery papers. This value (IWA/a) represents a useful metric to assess the potential impact of discovery bias on the inferred population-level eccentricity distribution (see Dupuy & Liu, 2011ApJ...733..122D 2011ApJ...733..122D and Section 4.4). Values above 1.0, between 0.5 and 1.0, and below 0.5 indicate strong, moderate, and minimal discovery bias, respectively. Note (5): Computed from the time baseline over which this companion has been imaged (Δt) and the best-fit orbital period (P). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- ID Target identification 17- 21 F5.3 --- e-med [0.08/0.94] Median eccentricity 23- 27 F5.3 --- e-MAP [0.02/0.98] Maximum a posteriori probability eccentricity 29- 33 F5.3 --- e68min [0/0.91] 68% c.i. minimum eccentricity 35- 38 F4.2 --- e68max [0.13/0.99] 68% c.i. maximum eccentricity 40- 45 F6.4 --- e95min [0/0.86] 95% c.i. minimum eccentricity 47- 50 F4.2 --- e95max [0.16/0.99] 95% c.i. maximum eccentricity 52- 62 A11 --- Data Code associates to data (1) 64- 92 A29 --- Ref2 Orbit fit references -------------------------------------------------------------------------------- Note (1): Code as follows: DI = relative astrometry from direct imaging (27 occurrences) Ast = absolute astrometry from HGCA, Brandt, 2018ApJS..239...31B 2018ApJS..239...31B (5 occurrences) RV = relative radial velocities (6 occurrences) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- ID Target identification 17- 24 F8.3 yr Epoch [1998.31/2018.72] Epoch in decimal years 26- 32 F7.2 mas Sep [177/5670] Separation 34- 39 F6.2 mas e_Sep [0.2/100] Uncertainty in Sep 41- 47 F7.3 deg PA [1.8/359.16] Position angle 49- 53 F5.3 deg e_PA [0.01/8.5] Uncetainty in P 55- 75 A21 --- Auth First author's name(s) of the reference 77- 95 A19 --- BibCode Bibcode of the reference -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Ref Reference code 4- 22 A19 --- BibCode Bibcode of the reference 24- 44 A21 --- Auth First author's name(s) 46- 68 A23 --- Comm Comment -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by Coralie Fix [CDS], 20-Mar-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line