J/AJ/164/26 102 hot Jupiters isochrone analyse & stellar modeling (Hamer+, 2022)
Evidence for the Late Arrival of Hot Jupiters in Systems with High Host-star
Obliquities.
Hamer J.H., Schlaufman K.C.
<Astron. J., 164, 26 (2022)>
=2022AJ....164...26H 2022AJ....164...26H
ADC_Keywords: Exoplanets; Spectroscopy; Photometry, UBVRIJKLMNH; Stars, ages;
Stars, masses; Effective temperatures; Extinction
Keywords: Exoplanet dynamics ; Exoplanet tides ; Exoplanet evolution ;
Exoplanet systems ; Exoplanets ; Stellar ages ; Stellar
kinematics ; Tidal interaction ; Star-planet interactions
Abstract:
It has been shown that hot Jupiters systems with massive, hot stellar
primaries exhibit a wide range of stellar obliquities. On the other
hand, hot Jupiter systems with low-mass, cool primaries often have
stellar obliquities close to zero. Efficient tidal interactions
between hot Jupiters and the convective envelopes present in
lower-mass main-sequence stars have been a popular explanation for
these observations. If this explanation is accurate, then aligned
systems should be older than misaligned systems. Likewise, the
convective envelope mass of a hot Jupiter's host star should be an
effective predictor of its obliquity. We derive homogeneous stellar
parameters-including convective envelope masses-for hot Jupiter host
stars with high-quality sky-projected obliquity inferences. Using a
thin-disk stellar population's Galactic velocity dispersion as a
relative age proxy, we find that hot Jupiter host stars with
larger-than-median obliquities are older than hot Jupiter host stars
with smaller-than-median obliquities. The relative age difference
between the two populations is larger for hot Jupiter host stars with
smaller-than-median fractional convective envelope masses and is
significant at the 3.6σ level. We identify stellar mass, not
convective envelope mass, as the best predictor of stellar obliquity
in hot Jupiter systems. The best explanation for these observations is
that many hot Jupiters in misaligned systems arrived in the close
proximity of their host stars long after their parent protoplanetary
disks dissipated. The dependence of observed age offset on convective
envelope mass suggests that tidal realignment contributes to the
population of aligned hot Jupiters orbiting stars with convective
envelopes.
Description:
We retrieve all known hot Jupiters from the NASA Exoplanet Archive as
of 2022 February 15 following the definition P<10days and Mpl>0.1MJup.
The data queried from the NASA Exoplanet Archive include Gaia DR2 for
the hot Jupiter host stars. Next, we use the Gaia EDR3 neighbourhood
table provided by the Gaia Archive.
We then obtain the photometry for our sample of hot Jupiter hosts to
enable us to fit MESA Isochrones & Stellar Tracks (MIST) isochrones to
our data. We query the Gaia Archive for the Gaia DR2 photometry of our
hosts.
We use the Gaia crossmatch best neighbor tables to identify the
corresponding AllWISE, Wide-field Infrared Survey Explorer (WISE), Two
Micron All Sky Survey (2MASS), SDSS DR13, and SkyMapper Data Release 2
identifiers. We query Galaxy Evolution Explorer (GALEX) on VizieR
using the Gaia EDR3 designations of our host stars.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 569 102 *Isochrone analysis input data and stellar modeling
output data
--------------------------------------------------------------------------------
Note on table1.dat: table1 and table2 in the article.
--------------------------------------------------------------------------------
See also:
B/simbad : Simbad objects catalogue (M.Wenger 2000)
I/337 : Gaia DR1 (Gaia Collaboration, 2016)
II/335 : Revised catalog of GALEX UV sources (Bianchi+ 2017)
VII/233 : The 2MASS Extended sources (IPAC/UMass, 2003-2006)
J/ApJ/651/L49 : Upper Sco OB association IRAC observations (Carpenter+, 2006)
J/ApJ/683/1076 : Transits of exoplanet XO-3b (Winn+, 2008)
J/ApJ/707/446 : HAT-P-13 photometry follow-up (Bakos+, 2009)
J/ApJ/706/785 : HAT-P-12 light curve (Hartman+, 2009)
J/ApJ/704/1107 : Transiting planet candidates HATNet field 205 (Latham+, 2009)
J/A+A/502/391 : WASP-13b photometry and radial velocities (Skillen+, 2009)
J/A+A/502/395 : WASP-11b (West+, 2009)
J/ApJ/700/302 : Relative photometry of XO-3 (Winn+, 2009)
J/ApJ/709/159 : Relative Ic photometry of WASP-17 (Anderson+, 2010)
J/A+A/519/A98 : Transit of exoplanet WASP-21b (Bouchy+, 2010)
J/ApJ/720/1118 : i-band photometry of HAT-P-16 (Buchhave+, 2010)
J/ApJ/725/2017 : Sloan i-band light curve of HAT-P-24 (Kipping+, 2010)
J/A+A/520/A56 : WASP-26b RV and photometric data (Smalley+, 2010)
J/ApJ/715/458 : Differential photometry of HAT-P-14 (Torres+, 2010)
J/A+A/524/A25 : Radial Velocities on 6 exoplanet host stars (Triaud+, 2010)
J/A+A/534/A16 : WASP-22 & WASP-26 photometry and velocities (Anderson+, 2011)
J/ApJ/742/116 : Photometry of 4 massive transiting exoplanets (Bakos+, 2011)
J/A+A/525/A54 : Transits of WASP-38b (Barros+, 2011)
J/A+A/531/A40 : Transits of WASP-39b (Faedi+, 2011)
J/ApJ/726/52 : HAT-P-18 and HAT-P-19 follow-up (Hartman+, 2011)
J/A+A/527/L11 : HAT-P-6 radial velocity curve (Hebrard+, 2011)
J/ApJ/735/24 : HAT-P-30 follow-up photometry (Johnson+, 2011)
J/AJ/141/63 : Relative radial velocities of HAT-P-4 & HAT-P-14 (Winn+, 2011)
J/ApJ/757/18 : Radial velocities 16 hot Jupiter host stars (Albrecht+, 2012)
J/AJ/144/19 : Follow-up photometry HAT-P-34 through HAT-P-37 (Bakos+, 2012)
J/MNRAS/423/1503 : RV curves of WASP-16, 25 and 31 (Brown+, 2012)
J/ApJ/750/84 : Follow-up photometry and velocity of Qatar 2 (Bryan+, 2012)
J/AJ/144/139 : HAT-P-39, HAT-P-40, and HAT-P-41 follow-up (Hartman+, 2012)
J/MNRAS/426/739 : Velocities for seven transiting hot Jupiters (Hellier+, 2012)
J/ApJ/745/19 : Binary systems in Taurus-Auriga (Kraus+, 2012)
J/A+A/544/A72 : WASP-42 and WASP-49 photometry and velocities (Lendl+, 2012)
J/A+A/547/A61 : WASP78 and WASP79 RV and photometric data (Smalley+, 2012)
J/A+A/552/A82 : WASP-64b and WASP-72b light curves (Gillon+, 2013)
J/A+A/549/A134 : 4 new WASP transiting close-in giant planets (Hebrard+, 2013)
J/A+A/556/A150 : SWEETCat I. Stellar parameters for host stars (Santos+, 2013)
J/A+A/552/A120 : WASP-71b light curve (Smith+, 2013)
J/A+A/551/A80 : WASP-80 photometric and radial velocity data (Triaud+, 2013)
J/MNRAS/445/1114 : WASP-69b, WASP-70Ab and WASP-84b (Anderson+, 2014)
J/A+A/562/L3 : WASP-103b radial velocities and light curves (Gillon+, 2014)
J/A+A/572/A49 : WASP-94AB photo. & radial velocities (Neveu-VanMalle+, 2014)
J/AJ/150/12 : Radial velocity of HD 33643 (Bieryla+, 2015)
J/A+A/575/A111 : GAPS V; Global analysis of the XO-2 system (Damasso+, 2015)
J/AJ/150/85 : Photometry and spectroscopy of HAT-P-56 (Huang+, 2015)
J/A+A/579/A136 : HAT-P-36 and WASP-11/HAT-P-10 light curves (Mancini+, 2015)
J/ApJ/801/3 : Rotation periods for Q3-Q14 KOIs (Mazeh+, 2015)
J/MNRAS/450/1760 : Transiting planet WASP-6b (Tregloan-Reed+, 2015)
J/ApJS/225/32 : Extended abundance analysis of cool stars (Brewer+, 2016)
J/A+A/594/A50 : K2-30 b and K2-34 b K2 light curves (Lillo-Box+, 2016)
J/AJ/152/127 : Sloan i follow-up light curves of HATS-18 (Penev+, 2016)
J/MNRAS/457/4205 : WASP-22, WASP-41, WASP-42, WASP-55 (Southworth+, 2016)
J/A+A/585/A126 : 3 irradiated & bloated hot Jupiters RV and phot. (West+, 2016)
J/A+A/608/A135 : Na detection in WASP-69b atmosphere (Casasayas-Barris+, 2017)
J/A+A/599/A3 : WASP 127, 136 and 138 RV and light curves (Lam+, 2017)
J/AJ/154/107 : California-Kepler Survey. I. 1305 stars (Petigura+, 2017)
J/ApJS/237/38 : Extended abundance analysis of KOIs (Brewer+, 2018)
J/ApJ/860/109 : Keck HIRES obs. 245 subgiants (retired Astars) (Ghezzi+, 2018)
J/A+A/613/A41 : 5 exoplanet light and RV curves (Mancini+, 2018)
J/AJ/155/165 : Dissipation exoplanet hosts from tidal spin-up (Penev+, 2018)
J/A+A/620/A58 : SWEET-Cat updated (Sousa+, 2018)
J/AJ/158/190 : Main sequence hot Jupiter hosts good astrometry (Hamer+, 2019)
J/AJ/158/197 : Radial velocities & light curves of KELT-24 (Rodriguez+, 2019)
J/AJ/157/141 : Radial velocity and light curves of WASP-190 (Temple+, 2019)
J/AJ/158/141 : Differential photo. & RVs of HAT-P-69 & HAT-P-70 (Zhou+, 2019)
J/A+A/635/A205 : Ultra-hot Jupiter WASP-121b transits (Bourrier+, 2020)
J/A+A/640/A32 : WASP-148 velocity curve (Hebrard+, 2020)
J/A+A/642/A50 : WASP-74 grizs light curves (Luque+, 2020)
J/AJ/160/214 : 130 Stellar ages & planetary orbital prop. (Safsten+, 2020)
J/AJ/161/68 : Obliquities of 150 hot Kepler hosting stars (Louden+, 2021)
J/A+A/649/A3 : Gaia EDR 3 photometric passbands (Riello+, 2021)
J/A+A/653/A160 : Updated radial velocities from Gaia DR2 (Seabroke+, 2021)
J/AJ/163/159 : Species abundances in WASP-77A (Reggiani+, 2022)
J/AJ/163/158 : BRV light curve of XO-3 (Worku+, 2022)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 14 A14 --- Name Planet's host star name
16- 23 F8.5 mas plx [0.98/50.6] Gaia EDR3 parallax
25- 31 F7.5 mas e_plx [0.008/0.2] Error on plx
33- 39 F7.5 mag AVmag [0/0.54] Extinction in V band from dust map
41- 47 F7.5 mag e_AVmag [0/0.5] Error on extinction in AVmag
49- 59 F11.5 K Teff [4143/10170]? Effective temperature from
spectroscopy
61- 69 F9.5 K e_Teff [7/480]? Error on Teff
71- 77 F7.5 [cm/s2] logg [3.92/4.8]? Surface gravity from spectroscopy
79- 85 F7.5 [cm/s2] e_logg [0.01/0.7]? Error on logg
87- 94 F8.5 [-] [Fe/H] [-0.41/0.5]? Metallicity from spectroscopy
96-102 F7.5 [-] e_[Fe/H] [0.01/0.1]? Error on [Fe/H]
104-111 F8.5 mag NUVmag [12.9/21.9]? GALEX NUV magnitude
113-119 F7.5 mag e_NUVmag [0.002/0.4]? Error on NUVmag
121-128 F8.5 mag umag [9.38/17]? SDSS or SkyMapper u band magnitude
130-136 F7.5 mag e_umag [0.003/0.04]? Error on umag
138-145 F8.5 mag vmag [8.72/16.2]? SkyMapper v band magnitude
147-153 F7.5 mag e_vmag [0.003/0.02]? Error on vmag
155-162 F8.5 mag gmag [9.85/15.5]? SDSS or SkyMapper g band
magnitude
164-170 F7.5 mag e_gmag [0.004/0.04]? Error on gmag
172-179 F8.5 mag rmag [9.58/14.8]? SDSS or SkyMapper r band
magnitude
181-187 F7.5 mag e_rmag [0.004/0.02]? Error on rmag
189-196 F8.5 mag imag [9.42/14.6]? SDSS or SkyMapper i band
magnitude
198-204 F7.5 mag e_imag [0.004/0.03]? Error on imag
206-213 F8.5 mag zmag [10.4/14.5]? SDSS or SkyMapper z band
magnitude
215-221 F7.5 mag e_zmag [0.003/0.03]? Error on zmag
223-230 F8.5 mag BPmag [7.61/15.3] Gaia DR2 BP mean magnitude
232-238 F7.5 mag e_BPmag [0.002/0.01] Error on BPmag
240-247 F8.5 mag Gmag [7.41/14.9] Gaia DR2 G mean magnitude
249-255 F7.5 mag e_Gmag [0.0003/0.002] Error on Gmag
257-264 F8.5 mag RPmag [6.8/14.2] Gaia DR2 RP mean magnitude
266-272 F7.5 mag e_RPmag [0.002/0.01] Error on RPmag
274-281 F8.5 mag Jmag [6.07/13.5]? 2MASS J magnitude
283-289 F7.5 mag e_Jmag [0.01/0.05]? Error on Jmagn
291-298 F8.5 mag Hmag [5.58/13.09]? 2MASS H magnitude
300-306 F7.5 mag e_Hmag [0.01/0.06]? Error on Hmag
308-315 F8.5 mag Kmag [5.54/13.1]? 2MASS K magnitude
317-323 F7.5 mag e_Kmag [0.01/0.04]? Error on Kmag
325-332 F8.5 mag W1mag [7.46/13]? AllWISE or WISE W1 magnitude
334-340 F7.5 mag e_W1mag [0.02/0.1]? Error on W1mag
342-349 F8.5 mag W2mag [7.12/13]? AllWISE or WISE W2 magnitude
351-357 F7.5 mag e_W2mag [0.01/0.04]? Error on W2mag
359-375 F17.5 yr Age [126918579/13059983270] Stellar age from
isochrone analysis
377-392 F16.5 yr e_Age [18199649/1924875180] Lower uncertainty Age
394-409 F16.5 yr E_Age [7706714/1776789285] Upper uncertainty on Age
411-418 F8.5 [-] [Fe/H]-i [-0.31/0.57] Stellar metallicity from
isochrone analysis
420-426 F7.5 [-] e_[Fe/H]-i [0.004/0.05] Lower uncertainty on [Fe/H]-i
428-434 F7.5 [-] E_[Fe/H]-i [0.003/0.05] Upper uncertainty on [Fe/H]-i
436-442 F7.5 Msun Mass [0.61/2.36] Stellar mass from isochrone
analysis
444-450 F7.5 Msun e_Mass [0.001/0.06] Lower uncertainty on Mass
452-458 F7.5 Msun E_Mass [0.002/0.06] Upper uncertainty on Mass
460-466 F7.5 Rsun Rad [0.6/2.33] Stellar radius from isochrone
analysis
468-474 F7.5 Rsun e_Rad [0.001/0.04] Lower uncertainty on Rad
476-482 F7.5 Rsun E_Rad [0.0009/0.05] Upper uncertainty on Rad
484-493 F10.5 K Teff-i [4096/9711] Stellar effective temperature
from isochrone analysis
495-503 F9.5 K e_Teff-i [1/118] Lower uncertainty on Teff-i
505-513 F9.5 K E_Teff [2/177] Upper uncertainty on Teff-i
515-521 F7.5 [cm/s2] logg-i [3.94/4.66] Stellar surface gravity from
isochrone analysis
523-529 F7.5 [cm/s2] e_logg-i [0.001/0.03] Lower uncertainty on logg-i
531-537 F7.5 [cm/s2] E_logg-i [0.002/0.03] Upper uncertainty on logg-i
539-545 F7.5 mag AVmag-i [0.0006/0.63] Extinction in V band from
isochrone analysis
547-553 F7.5 mag e_AVmag-i [0.0005/0.07] Lower uncertainty on AVmag-i
555-561 F7.5 mag E_AVmag-i [0.0004/0.06] Upper uncertainty on AVmag-i
563-569 F7.5 --- fMass [0/0.73] Fraction of stellar mass in surface
convective envelope
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS], 24-Oct-2022