J/AJ/164/60 Chemical abundances in 849 exoplanet hosts stars (Swastik+, 2022)
Galactic Chemical Evolution of Exoplanet Hosting Stars: Are High-mass Planetary
Systems Young?
Swastik C., Banyal R.K., Narang M., Manoj P., Sivarani T., Rajaguru S.P.,
Unni A., Banerjee B.
<Astron. J., 164, 60 (2022)>
=2022AJ....164...60S 2022AJ....164...60S
ADC_Keywords: Exoplanets; Abundances, [Fe/H]; Abundances; Optical
Keywords: Spectroscopy ; Extrasolar gaseous giant planets ; Exoplanet
formation ; Stellar ages ; Metallicity ; Chemical abundances ;
Exoplanets
Abstract:
The imprints of stellar nucleosynthesis and chemical evolution of the
galaxy can be seen in different stellar populations, with older
generation stars showing higher α-element abundances and the
later generations becoming enriched with iron-peak elements. The
evolutionary connections and chemical characteristics of circumstellar
disks, stars, and their planetary companions can be inferred by
studying the interdependence of planetary and host star properties.
Numerous studies in the past have confirmed that high-mass giant
planets are commonly found around metal-rich stars, while the stellar
hosts of low-mass planets have a wide range of metallicity. In this
work, we analyzed the detailed chemical abundances for a sample of
>900 exoplanet hosting stars drawn from different radial velocity and
transit surveys. We correlate the stellar abundance trends for
α- and iron-peak elements with the planets' mass. We find the
planet mass-abundance correlation to be primarily negative for
α-elements and marginally positive or zero for the iron-peak
elements, indicating that stars hosting giant planets are relatively
younger. This is further validated by the age of the host stars
obtained from isochrone fitting. The later enrichment of
protoplanetary material with iron and iron-peak elements is also
consistent with the formation of the giant planets via the core
accretion process. A higher metal fraction in the protoplanetary disk
is conducive to rapid core growth, thus providing a plausible route
for the formation of giant planets. This study, therefore, indicates
that the observed trends in stellar abundances and planet mass are
most likely a natural consequence of Galactic chemical evolution.
Description:
To study the elemental abundances of the α-, iron-peak, and
other elements (mainly the s-process and r-process elements) of the
exoplanet host stars, we used the data set from three different
surveys, namely, HARPS-GTO (Mayor+, 2003Msngr.114...20M 2003Msngr.114...20M;
Lo Curto+, 2010, J/A+A/512/A48; Santos+, 2011, J/A+A/526/A112),
CPS (Brewer+, 2016, J/ApJS/225/32), and
CKS (Brewer & Fischer, 2018, J/ApJS/237/38).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 175 1440 Key parameters of exoplanet host stars used in
this study
--------------------------------------------------------------------------------
See also:
J/A+A/415/1153 : [Fe/H] for 98 extra-solar planet-host stars (Santos+, 2004)
J/ApJ/622/1102 : The planet-metallicity correlation. (Fischer+, 2005)
J/A+A/512/A48 : HARPS RV curves HD125612, HD215497, HIP5158 (Lo Curto+, 2010)
J/ApJ/736/19 : Kepler planetary candidates. II. (Borucki+, 2011)
J/A+A/526/A112 : Radial velocities of HARPS metal-poor sample (Santos+, 2011)
J/A+A/545/A32 : Chemical abundances of 1111 FGK stars (Adibekyan+, 2012)
J/MNRAS/423/122 : Abundances of 93 solar-type Kepler targets (Bruntt+, 2012)
J/ApJ/771/107 : Spectroscopy of faint KOI stars (Everett+, 2013)
J/AJ/148/54 : The Hypatia Catalog ((Hinkel+, 2014)
J/A+A/576/A89 : O abundances from HARPS in F-G stars (Bertran de Lis+, 2015)
J/A+A/586/A49 : r & s process elements in Milky Way disk (Battistini+, 2016)
J/ApJS/225/32 : Extended abundance analysis of cool stars (Brewer+, 2016)
J/ApJ/834/17 : Mass & radius of planets, moons, low mass stars (Chen+, 2017)
J/A+A/606/A94 : Chemical abundances of 1059 FGK stars (Delgado Mena+, 2017)
J/AJ/154/108 : California-Kepler Survey. II. Properties (Johnson+, 2017)
J/A+A/600/A22 : Iron-peak elements in solar neighbourhood (Mikolaitis+, 2017)
J/AJ/154/107 : California-Kepler Survey. I. 1305 stars (Petigura+, 2017)
J/A+A/599/A96 : [C/H] Chemical abundances 1110 stars (Suarez-Andres+, 2017)
J/ApJ/865/68 : Abundances for 79 Sun-like stars within 100pc (Bedell+, 2018)
J/ApJS/237/38 : Extended abundance analysis of KOIs (Brewer+, 2018)
J/AJ/155/89 : California-Kepler Survey (CKS). IV. Planets (Petigura+, 2018)
J/A+A/624/A19 : GALAH survey, chemodynamical analyse with TGAS (Buder+, 2019)
J/A+A/624/A78 : Masses and ages of 1059 HARPS-GTO stars (Delgado Mena+, 2019)
J/AJ/158/190 : Main sequence hot Jupiter host with astrometry (Hamer+, 2019)
J/A+A/634/A136 : Chemical S abundances of 719 FGK stars (Costa Silva+, 2020)
J/AJ/159/194 : Planets main sequence stars in GALEX UV (Viswanath+, 2020)
J/A+A/655/A99 : Chemical abundances of 762 FGK stars (Delgado Mena+, 2021)
J/A+A/649/A49 : Spectroscopic study of CEMP-(s & r/s) stars (Goswami+, 2021)
J/AJ/162/229 : 13 Magellanic Clouds metal-poor stars (Reggiani+, 2021)
J/ApJS/259/45 : Abundances northern bright TESS stars (Tautvaisiene+, 2022)
J/AJ/163/128 : Abundances in 1018 KOIs and their planets (Wilson+, 2022)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- Star Star identifier
14- 27 A14 --- Planet Planet identifier
29- 38 F10.6 deg RAdeg [2/360] Right Ascension (J2000)
40- 49 F10.6 deg DEdeg [-85/80] Declination in decimal degrees (J2000)
51- 59 A9 --- Survey Survey identifier; CKS, CPS or HARPS-GTO
61- 67 F7.4 Mjup Massp [0.0005/13] Planet mass
69- 73 F5.2 [Sun] [Fe/H] [-0.63/0.4] Metallicity
75- 79 F5.2 [Sun] [Mg/Fe] [-0.16/0.32]? log Mg/Fe abundance
81- 85 F5.2 [Sun] [Si/Fe] [-0.37/0.96]? log Si/Fe abundance
87- 92 F6.3 [Sun] [Ca/Fe] [-0.26/0.58] log Ca/Fe abundance
94- 98 F5.2 [Sun] [Ti/Fe] [-0.36/0.45]? log Ti/Fe abundance
100-105 F6.3 [Sun] [Mn/Fe] [-0.69/0.18] log Mn/Fe abundance
107-112 F6.3 [Sun] [Ni/Fe] [-0.24/0.61] log Ni/Fe abundance
114-120 F7.4 [Sun] [Cr/Fe] [-0.61/0.14] log Cr/Fe abundance
122-126 F5.2 [Sun] [Y/Fe] [-0.95/0.52]? log Y/Fe abundance
128-133 F6.3 [Sun] [Co/Fe] [-0.065/0.262]? log Co/Fe abundance
135-139 F5.2 [Sun] [CuI/Fe] [-0.14/0.27]? log (Cu I)/Fe abundance
141-145 F5.2 [Sun] [ZnI/Fe] [-0.14/0.2]? log (Zn I)/Fe abundance
147-151 F5.2 [Sun] [SrI/Fe] [-0.14/0.21]? log (Sr I)/Fe abundance
153-157 F5.2 [Sun] [ZrII/Fe] [-0.14/0.16]? log (Zr II)/Fe abundance
159-163 F5.2 [Sun] [BaII/Fe] [-0.22/0.24]? log (Ba II)/Fe abundance
165-169 F5.2 [Sun] [CeII/Fe] [-0.2/0.21]? log (Ce II)/Fe abundance
171-175 F5.2 [Sun] [NdII/Fe] [-0.25/0.2]? log (Nd II)/Fe abundance
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS], 26-Oct-2022