J/AJ/164/60   Chemical abundances in 849 exoplanet hosts stars  (Swastik+, 2022)

Galactic Chemical Evolution of Exoplanet Hosting Stars: Are High-mass Planetary Systems Young? Swastik C., Banyal R.K., Narang M., Manoj P., Sivarani T., Rajaguru S.P., Unni A., Banerjee B. <Astron. J., 164, 60 (2022)> =2022AJ....164...60S 2022AJ....164...60S
ADC_Keywords: Exoplanets; Abundances, [Fe/H]; Abundances; Optical Keywords: Spectroscopy ; Extrasolar gaseous giant planets ; Exoplanet formation ; Stellar ages ; Metallicity ; Chemical abundances ; Exoplanets Abstract: The imprints of stellar nucleosynthesis and chemical evolution of the galaxy can be seen in different stellar populations, with older generation stars showing higher α-element abundances and the later generations becoming enriched with iron-peak elements. The evolutionary connections and chemical characteristics of circumstellar disks, stars, and their planetary companions can be inferred by studying the interdependence of planetary and host star properties. Numerous studies in the past have confirmed that high-mass giant planets are commonly found around metal-rich stars, while the stellar hosts of low-mass planets have a wide range of metallicity. In this work, we analyzed the detailed chemical abundances for a sample of >900 exoplanet hosting stars drawn from different radial velocity and transit surveys. We correlate the stellar abundance trends for α- and iron-peak elements with the planets' mass. We find the planet mass-abundance correlation to be primarily negative for α-elements and marginally positive or zero for the iron-peak elements, indicating that stars hosting giant planets are relatively younger. This is further validated by the age of the host stars obtained from isochrone fitting. The later enrichment of protoplanetary material with iron and iron-peak elements is also consistent with the formation of the giant planets via the core accretion process. A higher metal fraction in the protoplanetary disk is conducive to rapid core growth, thus providing a plausible route for the formation of giant planets. This study, therefore, indicates that the observed trends in stellar abundances and planet mass are most likely a natural consequence of Galactic chemical evolution. Description: To study the elemental abundances of the α-, iron-peak, and other elements (mainly the s-process and r-process elements) of the exoplanet host stars, we used the data set from three different surveys, namely, HARPS-GTO (Mayor+, 2003Msngr.114...20M 2003Msngr.114...20M; Lo Curto+, 2010, J/A+A/512/A48; Santos+, 2011, J/A+A/526/A112), CPS (Brewer+, 2016, J/ApJS/225/32), and CKS (Brewer & Fischer, 2018, J/ApJS/237/38). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 175 1440 Key parameters of exoplanet host stars used in this study -------------------------------------------------------------------------------- See also: J/A+A/415/1153 : [Fe/H] for 98 extra-solar planet-host stars (Santos+, 2004) J/ApJ/622/1102 : The planet-metallicity correlation. (Fischer+, 2005) J/A+A/512/A48 : HARPS RV curves HD125612, HD215497, HIP5158 (Lo Curto+, 2010) J/ApJ/736/19 : Kepler planetary candidates. II. (Borucki+, 2011) J/A+A/526/A112 : Radial velocities of HARPS metal-poor sample (Santos+, 2011) J/A+A/545/A32 : Chemical abundances of 1111 FGK stars (Adibekyan+, 2012) J/MNRAS/423/122 : Abundances of 93 solar-type Kepler targets (Bruntt+, 2012) J/ApJ/771/107 : Spectroscopy of faint KOI stars (Everett+, 2013) J/AJ/148/54 : The Hypatia Catalog ((Hinkel+, 2014) J/A+A/576/A89 : O abundances from HARPS in F-G stars (Bertran de Lis+, 2015) J/A+A/586/A49 : r & s process elements in Milky Way disk (Battistini+, 2016) J/ApJS/225/32 : Extended abundance analysis of cool stars (Brewer+, 2016) J/ApJ/834/17 : Mass & radius of planets, moons, low mass stars (Chen+, 2017) J/A+A/606/A94 : Chemical abundances of 1059 FGK stars (Delgado Mena+, 2017) J/AJ/154/108 : California-Kepler Survey. II. Properties (Johnson+, 2017) J/A+A/600/A22 : Iron-peak elements in solar neighbourhood (Mikolaitis+, 2017) J/AJ/154/107 : California-Kepler Survey. I. 1305 stars (Petigura+, 2017) J/A+A/599/A96 : [C/H] Chemical abundances 1110 stars (Suarez-Andres+, 2017) J/ApJ/865/68 : Abundances for 79 Sun-like stars within 100pc (Bedell+, 2018) J/ApJS/237/38 : Extended abundance analysis of KOIs (Brewer+, 2018) J/AJ/155/89 : California-Kepler Survey (CKS). IV. Planets (Petigura+, 2018) J/A+A/624/A19 : GALAH survey, chemodynamical analyse with TGAS (Buder+, 2019) J/A+A/624/A78 : Masses and ages of 1059 HARPS-GTO stars (Delgado Mena+, 2019) J/AJ/158/190 : Main sequence hot Jupiter host with astrometry (Hamer+, 2019) J/A+A/634/A136 : Chemical S abundances of 719 FGK stars (Costa Silva+, 2020) J/AJ/159/194 : Planets main sequence stars in GALEX UV (Viswanath+, 2020) J/A+A/655/A99 : Chemical abundances of 762 FGK stars (Delgado Mena+, 2021) J/A+A/649/A49 : Spectroscopic study of CEMP-(s & r/s) stars (Goswami+, 2021) J/AJ/162/229 : 13 Magellanic Clouds metal-poor stars (Reggiani+, 2021) J/ApJS/259/45 : Abundances northern bright TESS stars (Tautvaisiene+, 2022) J/AJ/163/128 : Abundances in 1018 KOIs and their planets (Wilson+, 2022) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Star Star identifier 14- 27 A14 --- Planet Planet identifier 29- 38 F10.6 deg RAdeg [2/360] Right Ascension (J2000) 40- 49 F10.6 deg DEdeg [-85/80] Declination in decimal degrees (J2000) 51- 59 A9 --- Survey Survey identifier; CKS, CPS or HARPS-GTO 61- 67 F7.4 Mjup Massp [0.0005/13] Planet mass 69- 73 F5.2 [Sun] [Fe/H] [-0.63/0.4] Metallicity 75- 79 F5.2 [Sun] [Mg/Fe] [-0.16/0.32]? log Mg/Fe abundance 81- 85 F5.2 [Sun] [Si/Fe] [-0.37/0.96]? log Si/Fe abundance 87- 92 F6.3 [Sun] [Ca/Fe] [-0.26/0.58] log Ca/Fe abundance 94- 98 F5.2 [Sun] [Ti/Fe] [-0.36/0.45]? log Ti/Fe abundance 100-105 F6.3 [Sun] [Mn/Fe] [-0.69/0.18] log Mn/Fe abundance 107-112 F6.3 [Sun] [Ni/Fe] [-0.24/0.61] log Ni/Fe abundance 114-120 F7.4 [Sun] [Cr/Fe] [-0.61/0.14] log Cr/Fe abundance 122-126 F5.2 [Sun] [Y/Fe] [-0.95/0.52]? log Y/Fe abundance 128-133 F6.3 [Sun] [Co/Fe] [-0.065/0.262]? log Co/Fe abundance 135-139 F5.2 [Sun] [CuI/Fe] [-0.14/0.27]? log (Cu I)/Fe abundance 141-145 F5.2 [Sun] [ZnI/Fe] [-0.14/0.2]? log (Zn I)/Fe abundance 147-151 F5.2 [Sun] [SrI/Fe] [-0.14/0.21]? log (Sr I)/Fe abundance 153-157 F5.2 [Sun] [ZrII/Fe] [-0.14/0.16]? log (Zr II)/Fe abundance 159-163 F5.2 [Sun] [BaII/Fe] [-0.22/0.24]? log (Ba II)/Fe abundance 165-169 F5.2 [Sun] [CeII/Fe] [-0.2/0.21]? log (Ce II)/Fe abundance 171-175 F5.2 [Sun] [NdII/Fe] [-0.25/0.2]? log (Nd II)/Fe abundance -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS], 26-Oct-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line