J/AJ/165/177 Properties of Planet-Host Binary Systems. III. (Sullivan+, 2023)
Revising Properties of Planet-Host Binary Systems.
III. There Is No Observed Radius Gap for Kepler Planets in Binary Star Systems.
Sullivan K., Kraus A.L., Huber D., Petigura E.A., Evans E., Dupuy T.,
Zhang J., Berger T.A., Gaidos E., Mann A.W.
<Astron. J., 165, 177 (2023)>
=2023AJ....165..177S 2023AJ....165..177S
ADC_Keywords: Exoplanets; Stars, double and multiple; Spectra, optical;
Spectra, infrared; Effective temperatures; Stars, diameters
Keywords: Exoplanets ; Extrasolar rocky planets ; Binary stars
Abstract:
Binary stars are ubiquitous; the majority of solar-type stars exist in
binaries. Exoplanet occurrence rate is suppressed in binaries, but
some multiples do still host planets. Binaries cause observational
biases in planet parameters, with undetected multiplicity causing
transiting planets to appear smaller than they truly are. We have
analyzed the properties of a sample of 119 planet-host binary stars
from the Kepler mission to study the underlying population of planets
in binaries that fall in and around the radius valley, which is a
demographic feature in period-radius space that marks the transition
from predominantly rocky to predominantly gaseous planets. We found no
statistically significant evidence for a radius gap for our sample of
122 planets in binaries when assuming that the primary stars are the
planet hosts, with a low probability (p<0.05) of the binary planet
sample radius distribution being consistent with the single-star
population of small planets via an Anderson-Darling test. These
results reveal demographic differences in the planet size distribution
between planets in binary and single stars for the first time, showing
that stellar multiplicity may fundamentally alter the planet formation
process. A larger sample and further assessment of circumprimary
versus circumsecondary transits is needed to either validate this
nondetection or explore other scenarios, such as a radius gap with a
location that is dependent on binary separation.
Description:
We observed all systems using the red setting
(6500Å≤λ≤10500Å; R∼1800) of the second-generation
low-resolution spectrograph (LRS2-R) on the Hobby-Eberly Telescope
(HET) at McDonald Observatory. Our observations were taken between UT
dates 2021-04-02 and 2021-09-20 in queue observing mode under
spectroscopic conditions during bright or gray time.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 142 120 System parameters for each source
table3.dat 110 119 Stellar parameter fit results for all KOIs in our
sample
table4.dat 160 180 Planet parameter fit results for all planets in
the binary KOI sample
--------------------------------------------------------------------------------
See also:
I/337 : Gaia DR1 (Gaia Collaboration, 2016)
J/ApJ/696/L84 : Primordial circumstellar disks binary systems (Cieza+, 2009)
J/AJ/142/112 : KIC photometric calibration (Brown+, 2011)
J/ApJ/751/115 : Millimeter emission Taurus binary systems (Harris+, 2012)
J/ApJ/745/19 : Binary systems in Taurus-Auriga (Kraus+, 2012)
J/ApJ/746/154 : Kinematic parallaxes for Sco-Cen members (Pecaut+, 2012)
J/A+A/556/A15 : Effective temperature scale of M dwarfs (Rajpurohit+, 2013)
J/ApJS/211/2 : Stellar properties of Q1-16 Kepler targets (Huber+, 2014)
J/ApJ/791/35 : Detection of 715 Kepler planet cands host stars (Law+, 2014)
J/MNRAS/445/2758 : KIC giants Bayesian distances &extinctions (Rodrigues+ 2014)
J/ApJ/804/64 : Empirical and model parameters of 183 M dwarfs (Mann+, 2015)
J/ApJS/217/31 : Kepler planetary candidates VI. 4yr Q1-Q16 (Mullally+, 2015)
J/ApJ/813/130 : Kepler multiple transiting planet systems (Wang+, 2015)
J/AJ/152/18 : RoboAO Kepler planetary candidate survey II (Baranec+, 2016)
J/ApJS/224/12 : Kepler planetary candidates. VII. 48-month (Coughlin+, 2016)
J/MNRAS/457/2877 : Kepler M dwarf stars revised properties (Gaidos+, 2016)
J/AJ/152/8 : Impact stellar mult. on planetary systems I. (Kraus+, 2016)
J/AJ/153/25 : NIR observations of 84 KOI systems (Atkinson+, 2017)
J/AJ/154/109 : California-Kepler Survey. III. Planet radii (Fulton+, 2017)
J/AJ/153/71 : Kepler follow-up observation program. I. (Furlan+, 2017)
J/AJ/154/108 : California-Kepler Survey. II. Properties (Johnson+, 2017)
J/ApJS/229/30 : Revised stellar properties of Q1-17 Kepler (Mathur+, 2017)
J/AJ/154/107 : California-Kepler Survey. I. 1305 stars (Petigura+, 2017)
J/AJ/153/66 : Robo-AO Kepler Planetary Cand. Survey. III. (Ziegler+, 2017)
J/ApJS/235/38 : Kepler planet cand. VIII. DR25 reliability (Thompson+, 2018)
J/AJ/155/161 : Stars nearby Robo-AO Kepler planetary cands (Ziegler+, 2018)
J/AJ/160/108 : Gaia-Kepler stellar properties. II. Planets (Berger+, 2020)
J/AJ/159/211 : Exoplanets parameters from Kepler and K2 (Cloutier+, 2020)
J/ApJ/898/47 : Fe/H & radii blended sp. of simulated bin (Furlan+, 2020)
J/ApJS/247/28 : K2 star parameters Gaia & LAMOST (Hardegree-Ullman+, 2020)
J/AJ/159/19 : SOAR TESS survey. I. (Ziegler+, 2020)
J/AJ/161/265 : Compared rotation periods 1189 CKS host stars (David+, 2021)
J/AJ/162/110 : Gaia EDR3 census Taurus-Auriga complex (Krolikowski+, 2021)
J/other/Sci/377.1211 : RV and LC of 8 M dwarf stars with planets (Luque+, 2022)
J/AJ/163/179 : The California-Kepler Survey. X. (Petigura+, 2022)
http://exoplanetarchive.ipac.caltech.edu/ : NASA exoplanets archive
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- KOI Kepler object of interest identifier
6- 10 F5.3 arcsec Sep [0.01/1.98] angular separation, arcseconds
12- 15 I4 yr Obs.Y [2021/2022] Observation year
17- 18 I2 "month" Obs.M Observation month
20- 21 I2 d Obs.D Observation day
23- 29 F7.4 mag rmag [9.29/15.7] r-band magnitude
31- 36 F6.1 --- SNR [37/2095] Signal-to-Noise Ratio
38- 42 F5.3 mag imag [0.49/4.21]? SDSS i-band magnitude
44- 48 F5.3 mag e_imag [0.01/0.4]? Uncertainty in imag
50- 54 F5.3 mag lp600 [0.04/4.34]? lp600 magnitude
56- 59 F4.2 mag e_lp600 [0.02/0.5]? Uncertainty in lp600
61- 66 F6.4 mag gmag [0.002/4.24]? Gaia eDR3 g-band magnitude
68- 72 F5.3 mag e_gmag [0.005/0.1]? Uncertainty in gmag
74- 77 F4.2 mag m562nm [0/4.24]? 562nm magnitude
79- 82 F4.2 mag e_m562nm [0.1/0.2]? Uncertainty in m562nm
84- 88 F5.3 mag m692nm [0.12/6.05]? 692nm magnitude
90- 94 F5.3 mag e_m692nm [0.1/0.2]? Uncertainty in m692nm
96-100 F5.3 mag m880nm [0.16/5.06]? 880num magnitude
102-106 F5.3 mag e_m880nm [0.1/0.9]? Uncertainty in m880nm
108-112 F5.3 mag jmag [0/5.1]? J-band magnitude
114-118 F5.3 mag e_jmag [0.01/0.3]? Uncertainty in jmag
120-124 F5.3 mag hmag [0.11/0.66]? H-band magnitude
126-130 F5.3 mag e_hmag [0.02/0.06]? Uncertainty in hmag
132-136 F5.3 mag kpmag [0.001/3.43]? K' band magnitude
138-142 F5.3 mag e_kpmag [0.001/0.5]? Uncertainty in kpmag
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- KOI Kepler object of interest identifier
6- 9 I4 K Teff1 [3575/6930] Stellar effective temperature,
component 1
11- 13 I3 K E_Teff1 [6/139] Upper uncertainty in Teff1
15- 17 I3 K e_Teff1 [7/786] Lower uncertainty in Teff1
19- 22 I4 K Teff2 [3237/6878] Stellar effective temperature,
component 2
24- 27 I4 K E_Teff2 [8/1102] Upper uncertainty in Teff2
29- 31 I3 K e_Teff2 [7/149] Lower uncertainty in Teff2
33- 36 I4 K Teffkep [3460/6888] Stellar effective temperature,
Kepler (1)
38- 40 I3 K e_Teffkep [68/299] Uncertainty in Teffkep
42- 45 F4.2 Rsun Rad1 [0.41/1.5] Stellar radius, component 1
47- 50 F4.2 Rsun E_Rad1 [0/0.07] Upper uncertainty in Rad1
52- 55 F4.2 Rsun e_Rad1 [0/0.3] Lower uncertainty in Rad2
57- 60 F4.2 --- Rad2/Rad1 [0.34/1.02] Ratio, stellar radii, component
2 to 1
62- 65 F4.2 --- E_Rad2/Rad1 [0/1] Upper uncertainty in Rad2/Rad1
67- 70 F4.2 --- e_Rad2/Rad1 [0.0/0.06] Lower uncertainty in Rad2/Rad1
72- 75 F4.2 Rsun Radkep [0.36/2.82] Stellar radius, Kepler (1)
77- 80 F4.2 Rsun e_Radkep [0.01/1] Uncertainty in Radkep
82- 85 F4.2 --- fcorr-p [0.36/1.76] Planetary radius correction
factor, if primary host
87- 90 F4.2 --- E_fcorr-p [0.02/2] Upper uncertainty in fcorr-p
92- 95 F4.2 --- e_fcorr-p [0.02/0.4] Lower uncertainty in fcorr-p
97-100 F4.2 --- fcorr-s [0.56/5.16] Planetary radius correction
factor, if secondary host
102-105 F4.2 --- E_fcorr-s [0.03/2] Upper uncertainty in fcorr-s
107-110 F4.2 --- e_fcorr-s [0.03/1] Lower uncertainty in fcorr-s
--------------------------------------------------------------------------------
Note (1): Kepler Teff and Rad from Mathur+, 2017, J/ApJS/229/30
values for the composite stellar system properties
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- KOI Kepler object of interest identifier
6- 12 F7.2 --- Planet Planet identifier
14- 19 F6.2 Rgeo Rad1 [0.58/590] Planet radius, primary as host
21- 25 F5.2 Rgeo E_Rad1 [0.05/51] Upper uncertainty in Rad1
27- 31 F5.2 Rgeo e_Rad1 [0.05/50] Lower uncertainty in Rad1
33- 39 F7.2 Rgeo Rad2 [0.73/1589] Planet radius, secondary as host
41- 46 F6.2 Rgeo E_Rad2 [0.06/144] Upper uncertainty in Rad2
48- 53 F6.2 Rgeo e_Rad2 [0.01/138] Lower uncertainty in Rad2
55- 60 F6.2 Rgeo Radkep [0.36/577] Planet radius, Kepler (1)
62- 66 F5.2 Rgeo e_Radkep [0.02/31] Uncertainty in Radkep
68- 71 I4 K Teq1 [147/2882] Planet equilibrium temperature,
primary as host
73- 75 I3 K E_Teq1 [5/359] Upper uncertainty in Teq1
77- 79 I3 K e_Teq1 [5/384] Lower uncertainty in Teq1
81- 84 I4 K Teq2 [55/2592] Planet equilibrium temperature,
secondary as host
86- 88 I3 K E_Teq2 [4/303] Upper uncertainty in Teq2
90- 92 I3 K e_Teq2 [4/305] Lower uncertainty in Teq2
94- 97 I4 K Teqkep [149/3653] Planet equilibrium temperature,
Kepler (1)
99-106 F8.2 --- S1 [0.28/15156] Isolation, Earth units,
primary host
108-113 F6.2 --- E_S1 [0.02/947] Upper uncertainty in S1
115-120 F6.2 --- e_S1 [0.02/950] Lower uncertainty in S1
122-128 F7.2 --- S2 [0.02/9992] Isolation, Earth units,
secondary host
130-135 F6.2 --- E_S2 [0/695] Upper uncertainty in S2
137-142 F6.2 --- e_S2 [0/707] Lower uncertainty in S2
144-151 F8.2 --- Skep [0.12/41864] Isolation, Earth units, Kepler (1)
153-160 F8.2 --- e_Skep [0.03/29069] Uncertainty in Skep
--------------------------------------------------------------------------------
Note (1): Kepler values from Thompson+, 2018, J/ApJS/235/38.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Sullivan et al. Paper I. 2022ApJ...935..141S 2022ApJ...935..141S
Sullivan et al. Paper II. 2022AJ....164..138S 2022AJ....164..138S
Sullivan et al. Paper III. 2023AJ....165..177S 2023AJ....165..177S This catalog
Sullivan et al. Paper IV. 2024AJ....168..129S 2024AJ....168..129S Cat. J/AJ/168/129
(End) Prepared by [AAS], Coralie Fix [CDS], 12-Sep-2023