J/ApJ/382/636              Rosseland mean free-free Gaunt factor (Itoh+ 1991)

The Rosseland mean free-free Gaunt factor of the dense high-Temperature stellar plasma Itoh N., Kuwashima F., Ichihashi K., Mutoh H. <Astrophys. J. 382, 636 (1991)> =1991ApJ...382..636I 1991ApJ...382..636I
ADC_Keywords: Atomic physics ; Opacities Keywords: atomic processes - dense matter - opacities - plasmas Abstract: The Rosseland mean free-free Gaunt factor of the dense high-temperature stellar plasma is calculated, based on both the accurate relativistic cross section and Sommerfeld's exact nonrelativistic cross section. A wide range of electron degeneracy is accurately taken into account. Comparison of the resulting free-free opacity with the electron conduction opacity is made. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . Thi file table1.dat 139 50 *Results of calculations of ≪g-1≫ -------------------------------------------------------------------------------- Note to table1.dat: ≪g-1≫ is the Rossseland inverse Gaunt factor -------------------------------------------------------------------------------- See also: J/ApJS/63/661 : Relativistic Free-Free Gaunt Factor (Nakagawa+ 1987) J/ApJS/74/291 : Relativistic Free-Free Gaunt Factor. II. (Itoh+ 1990) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 F4.1 --- Eta Value of the degeneracy parameter, η 6- 7 A2 --- Elem Element for Gaunt factor calculation (1) 10- 18 E9.3 --- G-4.0 ? Gaunt factor, log(γ2) = -4.0 21- 29 E9.3 --- G-3.5 ? Gaunt factor, log(γ2) = -3.5 32- 40 E9.3 --- G-3.0 ? Gaunt factor, log(γ2) = -3.0 43- 51 E9.3 --- G-2.5 ? Gaunt factor, log(γ2) = -2.5 54- 62 E9.3 --- G-2.0 ? Gaunt factor, log(γ2) = -2.0 65- 73 E9.3 --- G-1.5 ? Gaunt factor, log(γ2) = -1.5 76- 84 E9.3 --- G-1.0 ? Gaunt factor, log(γ2) = -1.0 87- 95 E9.3 --- G-0.5 ? Gaunt factor, log(γ2) = -0.5 98-106 E9.3 --- G+0.0 ? Gaunt factor, log(γ2) = 0.0 109-117 E9.3 --- G+0.5 ? Gaunt factor, log(γ2) = 0.5 120-128 E9.3 --- G+1.0 ? Gaunt factor, log(γ2) = 1.0 131-139 E9.3 --- G+2.0 ? Gaunt factor, log(γ2) = 2.0 -------------------------------------------------------------------------------- Note (1): The Rosseland mean inverse Gaunt factor was calculated for the following: H - relativistic hydrogen He - relativistic helium C - relativistic carbon O - relativistic oxygen G - exact nonrelativistic inverse Gaunt factor -------------------------------------------------------------------------------- Origin: AAS CD-ROM series, Volume 9, 1997 Lee E. Brotzman [ADS] 27-Aug-97
(End) [CDS] 05-Feb-1998
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line