J/ApJ/382/636 Rosseland mean free-free Gaunt factor (Itoh+ 1991)
The Rosseland mean free-free Gaunt factor of the dense
high-Temperature stellar plasma
Itoh N., Kuwashima F., Ichihashi K., Mutoh H.
<Astrophys. J. 382, 636 (1991)>
=1991ApJ...382..636I 1991ApJ...382..636I
ADC_Keywords: Atomic physics ; Opacities
Keywords: atomic processes - dense matter - opacities - plasmas
Abstract:
The Rosseland mean free-free Gaunt factor of the dense
high-temperature stellar plasma is calculated, based on both the
accurate relativistic cross section and Sommerfeld's exact
nonrelativistic cross section. A wide range of electron degeneracy is
accurately taken into account. Comparison of the resulting free-free
opacity with the electron conduction opacity is made.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . Thi file
table1.dat 139 50 *Results of calculations of ≪g-1≫
--------------------------------------------------------------------------------
Note to table1.dat: ≪g-1≫ is the Rossseland inverse Gaunt factor
--------------------------------------------------------------------------------
See also:
J/ApJS/63/661 : Relativistic Free-Free Gaunt Factor (Nakagawa+ 1987)
J/ApJS/74/291 : Relativistic Free-Free Gaunt Factor. II. (Itoh+ 1990)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 F4.1 --- Eta Value of the degeneracy parameter, η
6- 7 A2 --- Elem Element for Gaunt factor calculation (1)
10- 18 E9.3 --- G-4.0 ? Gaunt factor, log(γ2) = -4.0
21- 29 E9.3 --- G-3.5 ? Gaunt factor, log(γ2) = -3.5
32- 40 E9.3 --- G-3.0 ? Gaunt factor, log(γ2) = -3.0
43- 51 E9.3 --- G-2.5 ? Gaunt factor, log(γ2) = -2.5
54- 62 E9.3 --- G-2.0 ? Gaunt factor, log(γ2) = -2.0
65- 73 E9.3 --- G-1.5 ? Gaunt factor, log(γ2) = -1.5
76- 84 E9.3 --- G-1.0 ? Gaunt factor, log(γ2) = -1.0
87- 95 E9.3 --- G-0.5 ? Gaunt factor, log(γ2) = -0.5
98-106 E9.3 --- G+0.0 ? Gaunt factor, log(γ2) = 0.0
109-117 E9.3 --- G+0.5 ? Gaunt factor, log(γ2) = 0.5
120-128 E9.3 --- G+1.0 ? Gaunt factor, log(γ2) = 1.0
131-139 E9.3 --- G+2.0 ? Gaunt factor, log(γ2) = 2.0
--------------------------------------------------------------------------------
Note (1): The Rosseland mean inverse Gaunt factor was calculated for the
following:
H - relativistic hydrogen
He - relativistic helium
C - relativistic carbon
O - relativistic oxygen
G - exact nonrelativistic inverse Gaunt factor
--------------------------------------------------------------------------------
Origin: AAS CD-ROM series, Volume 9, 1997 Lee E. Brotzman [ADS] 27-Aug-97
(End) [CDS] 05-Feb-1998