J/ApJ/692/L9  Tidal evolution of transiting extrasolar planets  (Levrard+, 2009)

Falling transiting extrasolar giant planets. Levrard B., Winisdoerffer C., Chabrier G. <Astrophys. J., 692, L9-L13 (2009)> =2009ApJ...692L...9L 2009ApJ...692L...9L
ADC_Keywords: Planets ; Models, evolutionary ; Stars, masses ; Rotational velocities ; Stars, double and multiple Keywords: celestial mechanics - planetary systems: formation - planetary systems: protoplanetary disks Abstract: We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none, but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corresponding states do not represent the endpoint of the tidal evolution. Using numerical simulations of the coupled tidal equations for the spin and orbital parameters of each transiting planetary system, we confirm these predictions and show that the orbital eccentricity and the stellar obliquity do not follow the usually assumed exponential relaxation but instead decrease significantly, eventually reaching a zero value only during the final runaway merging of the planet with the star. The only characteristic evolution timescale of all rotational and orbital parameters is the lifetime of the system, which crucially depends on the magnitude of tidal dissipation within the star. These results imply that the nearly circular orbits of transiting planets and the alignment between the stellar spin axis and the planetary orbit are unlikely to be due to tidal dissipation. Other dissipative mechanisms, for instance interactions with the protoplanetary disk, must be invoked to explain these properties. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 152 25 Values and uncertainties of parameters relevant to tidal evolution of transiting planetary systems -------------------------------------------------------------------------------- See also: J/A+A/510/A107 : TrES-2b multi-band transit observations (Mislis+, 2010) J/MNRAS/408/1494 : Planetary transits of TrES-2 and TrES-3 (Colon+, 2010) J/MNRAS/408/1680 : Transiting planetary system WASP-2 (Southworth+, 2010) J/A+A/500/L45 : Observations of transits of the TrES-2 exoplanet (Mislis+, 2009) J/A+A/508/1011 : Planetary transit of TrES-1 and TrES-2 (Rabus+, 2009) J/A+A/503/601 : HD 17156 transit photometry + radial velocities (Barbieri+, 2009) J/AJ/136/267 : Six occultations of the exoplanet TrES-3 (Winn+, 2008) J/ApJ/675/1531 : Transits of super-Neptune HD 149026b (Winn+, 2008) J/A+A/475/1125 : Characterization of the hot Neptune GJ 436b (Demory+, 2007) J/ApJ/657/1098 : Transit of TrES-1 (Winn+, 2007) J/ApJ/664/1185 : Three transits of the exoplanet TrES-2 (Holman+, 2007) J/AJ/133/1828 : Transit light curves of HD 189733 (Winn+, 2007) J/ApJ/655/1103 : Five transits of the exoplanet OGLE-TR-10b (Holman+, 2007) J/A+A/466/743 : Transiting planet OGLE-TR-132b (Gillon+, 2007) J/ApJ/649/1043 : Transiting extrasolar planet HD 209458b (Richardson+, 2006) J/A+A/424/L31 : Transiting exoplanet OGLE-TR-132b (Moutou+, 2004) J/ApJ/582/1123 : Search for transiting extrasolar planets (Mallen-Ornelas+, 2003) J/A+A/392/215 : The CORALIE survey for extrasolar planets. IX. (Santos+, 2002) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Planetary system name 13- 17 F5.3 Mjup Mp Planetary mass in Jupiter masses 19- 23 F5.3 Mjup e_Mp Uncertainty in Mp 25- 27 A3 --- r_Mp Source(s) of Mp and e_Mp (1) 29- 33 F5.3 --- Rp Planetary radius in Jupiter radii 35- 39 F5.3 --- RpMin Lower limit value in Rp 41- 45 F5.3 --- RpMax Upper limit value in Rp 47- 49 A3 --- r_Rp Source(s) of Rp and Limit value in Rp (1) 51- 61 F11.8 d Torb Orbital period 63- 65 A3 --- r_Torb Source(s) of Torb (1) 67- 73 F7.5 AU a Separation 75- 82 F8.6 AU e_a Uncertainty in a 84- 88 A5 --- r_a Source(s) of a and e_a (1) 90- 94 F5.3 Msun Mstar Stellar mass 96-100 F5.3 Msun e_Mstar Uncertainty in Mstar 102-104 A3 --- r_Mstar Source(s) of Mstar and e_Mstar (1) 106-110 F5.3 Rsun Rstar Stellar radius 112-116 F5.3 Rsun e_Rstar Uncertainty in Rstar 118-122 A5 --- r_Rstar Source(s) of Rstar and e_Rstar (1) 124 A1 --- l_vsini Limit flag on vsini 125-129 F5.2 km/s vsini Projected stellar rotation velocity (2) 131-134 F4.2 km/s e_vsini ? Uncertainty in vsini 136-138 A3 --- r_vsini Source(s) of vsini and e_vsini (1) 140-144 F5.3 --- e ? Orbital eccentricity 146-150 F5.3 --- e_e ? Uncertainty in e 152 A1 --- r_e Source of e and e_e (1) -------------------------------------------------------------------------------- Note (1): References as follows: a = http://exoplanet.eu/catalog-transit.php; b = http://www.inscience.ch/transits/; c = Fischer et al. (2007ApJ...669.1336F 2007ApJ...669.1336F); d = Barbieri et al. (2007A&A...476L..13B 2007A&A...476L..13B); e = Loeillet et al. (2008A&A...481..529L 2008A&A...481..529L); f = Sato et al. (2005ApJ...633..465S 2005ApJ...633..465S); g = Winn et al. (2008, Cat. J/ApJ/675/1531); h = Gaudi & Winn (2007ApJ...655..550G 2007ApJ...655..550G); i = Pont et al. (2007A&A...465.1069P 2007A&A...465.1069P); j = Laughlin et al. (2005ApJ...629L.121L 2005ApJ...629L.121L); k = Demory et al. (2007, Cat. J/A+A/475/1125); l = Alonso et al. (2004ApJ...613L.153A 2004ApJ...613L.153A); m = O'Donovan et al. (2006ApJ...651L..61O 2006ApJ...651L..61O); n = Laughlin et al. (2005ApJ...621.1072L 2005ApJ...621.1072L); p = O'Donovan et al. (2007ApJ...663L..37O 2007ApJ...663L..37O); q = Mandushev et al. (2007ApJ...667L.195M 2007ApJ...667L.195M); r = McCullough et al. (2006ApJ...648.1228M 2006ApJ...648.1228M); s = Bakos et al. (2007ApJ...656..552B 2007ApJ...656..552B); t = Torres et al. (2007ApJ...666L.121T 2007ApJ...666L.121T); u = Kovacs et al. (2007ApJ...670L..41K 2007ApJ...670L..41K); v = Bakos et al. (2007ApJ...671L.173B 2007ApJ...671L.173B); w = Noyes et al. (2008ApJ...673L..79N 2008ApJ...673L..79N); x = Stempels et al. (2007MNRAS.379..773S 2007MNRAS.379..773S); y = Cameron et al. (2007MNRAS.375..951C 2007MNRAS.375..951C); z = Pollacco et al. (2008MNRAS.385.1576P 2008MNRAS.385.1576P); A = Melo et al. (2006A&A...460..251M 2006A&A...460..251M); B = Konacki et al. (2005ApJ...624..372K 2005ApJ...624..372K); C = Pont et al. (2004A&A...426L..15P 2004A&A...426L..15P); D = Bouchy et al. (2004A&A...421L..13B 2004A&A...421L..13B); E = Pont, F., pers. comm. * = estimated via Kepler's law; ** = based on the average of Loeillet et al. (2008A&A...481..529L 2008A&A...481..529L), Bakos et al. (2007ApJ...670..826B 2007ApJ...670..826B) and Winn et al. (2007ApJ...665L.167W 2007ApJ...665L.167W); *** = estimated via chromospheric activity (≃45 days by Demory et al. 2007, Cat. J/A+A/475/1125). Note (2): The stellar rotation velocity is determined from available data on star chromospheric activity and/or from the value of the projected velocity vsin(i)star, obtained from Doppler spectroscopic measurements, where istar is the angle between the stellar rotation axis and the line-of-sight, that we assumed to be close to 90°. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 25-Feb-2011
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line