J/ApJ/742/54   CASH project II. 14 extremely metal-poor stars   (Hollek+, 2011)

The Chemical Abundances of Stars in the Halo (CASH) project. II. A sample of 14 extremely metal-poor stars. Hollek J.K., Frebel A., Roederer I.U., Sneden C., Shetrone M., Beers T.C., Kang S.-J., Thom C. <Astrophys. J., 742, 54 (2011)> =2011ApJ...742...54H 2011ApJ...742...54H
ADC_Keywords: Equivalent widths ; Abundances ; Stars, halo ; Stars, metal-deficient Keywords: Galaxy: halo - methods: data analysis - stars: abundances - stars: atmospheres - stars: Population II Abstract: We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R∼15000) and corresponding high-resolution (R∼35000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H]←3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]←3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H]≲-3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Description: The stars of the pilot study were chosen from the Hamburg/ESO Bright Metal-Poor Sample (BMPS; Frebel et al. 2006, Cat. J/ApJ/652/1585) of the Hamburg/ESO objective-prism plate Survey (HES; Christlieb et al. 2001A&A...366..898C 2001A&A...366..898C). The snapshot spectra for the Chemical Abundances of Stars in the Halo (CASH) project were obtained using the fiber-fed High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope (HET) at McDonald Observatory. High-resolution spectra for 21 stars were obtained using the MIKE instrument on the Magellan-Clay Telescope at Las Campanas Observatory (See table 1). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 74 39 Observations (21 stars) table2.dat 43 6288 Equivalent widths (21 stars) table5.dat 55 21 Stellar parameters table6.dat 476 20 Abundances -------------------------------------------------------------------------------- See also: J/MNRAS/412/843 : SAGA extremely metal-poor stars (Suda+, 2011) J/A+A/530/A15 : Abundances of 94 stars (Nissen+, 2011) J/ApJ/711/573 : Detailed abundances in a halo stellar stream (Roederer+, 2010) J/A+A/501/519 : Extremely metal-poor stars abundances (Bonifacio+, 2009) J/ApJ/706/1095 : Chemical compositions of 26 outer halo stars (Zhang+, 2009) J/A+A/490/769 : Yields from extremely metal-poor stars (Campbell+, 2008) J/ApJ/679/1549 : Spectroscopy of CS 17435-00532. Paper I. (Roederer+, 2008) J/ApJ/655/492 : Equivalent widths of 26 metal-poor stars (Aoki+, 2007) J/AJ/132/137 : Abundances of extremely metal-poor carbon stars (Cohen+, 2006) J/ApJ/652/1585 : Bright metal-poor stars from HES survey (Frebel+, 2006) J/A+A/439/129 : HERES II. Spectroscopic analysis (Barklem+, 2005) J/AJ/130/2804 : Carbon abundances in metal-poor stars (Rossi+, 2005) J/A+A/415/993 : FeII, ZNI and SI abundances on halo stars (Nissen+, 2004) J/A+A/425/671 : Equivalent widths of 10 metal-poor halo stars (Bai+, 2004) J/AJ/128/2402 : Extremely metal-poor star candidates abundances (Lai+, 2004) J/ApJS/155/651 : Evolution of extremely metal-poor stars (Herwig+, 2004) J/A+A/416/1117 : Abundances in the early Galaxy (Cayrel+, 2004) J/A+A/403/1105 : Extremely metal-poor giants EWs (Francois+, 2003) J/A+AS/141/491 : Chemical composition of halo and disk stars (Nissen+, 2000) J/AJ/120/1841 : Abundances & Kinematics of Halo & Disk Stars (Fulbright 2000) J/A+A/354/169 : Metal-poor field stars abundances (Gratton+, 2000) J/AJ/90/2089 : Stars of very low metal abundance. I (Beers+, 1985) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Star Star identification (G1)(1) 14- 21 A8 --- Tel Telescope (HET or Magellan) 23- 33 A11 "YYYY/MMM/DD" Date UT date of observation 34 A1 --- f_Date [d] d = contaminated (2) 36- 37 I2 h RAh Hour of right ascension (J2000) 39- 40 I2 min RAm Minute of right ascension (J2000) 42- 45 F4.1 s RAs Second of right ascension (J2000) 47 A1 --- DE- Sign of declination (J2000) 48- 49 I2 deg DEd Degree of declination (J2000) 51- 52 I2 arcmin DEm Arcminute of declination (J2000) 54- 55 I2 arcsec DEs Arcsecond of declination (J2000) 57- 60 I4 s Exp ? Exposure time 62- 64 I3 --- S/N ? Signal to noise ratio at 5180Å 66 A1 --- f_S/N [a] a = S/N for combined HET spectra 68- 74 F7.2 km/s RV ? Radial velocity (3) -------------------------------------------------------------------------------- Note (1): BPS CS 22873-0166 and BPS CS 22873-0200 have inverted coordinates in the published paper; positions have been fixed at CDS. Note (2): Sky contamination in spectrum, excluded from this analysis. Note (3): Radial velocities were computed by cross-correlating the echelle order containing the Mg b triplet against another metal-poor giant observed with the same instrumental setup. Typical uncertainties were 2-3km/s for a single observation. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Star Star name (G1) 14- 17 F4.1 --- Ion Ion identification (1) 19- 25 F7.2 0.1nm lambda Wavelength λ (Å) 27- 30 F4.2 eV ExPot Excitation potential 32- 37 F6.3 [-] log(gf) Log of the oscillator strength 39- 43 F5.1 0.1pm EW Equivalent width (mÅ) -------------------------------------------------------------------------------- Note (1): We list the ionization state of each element where .0 indicates a neutral species and .1 indicates a singly-ionized species. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Star Star name (G1) 14- 17 I4 K Teff Effective temperature from Magellan/MIKE 19- 22 F4.2 [cm/s2] logg Surface gravity from Magellan/MIKE 24- 27 F4.2 km/s Vt Microturbulent velocity from Magellan/MIKE 29- 33 F5.2 [Sun] [Fe/H] Metallicity from Magellan/MIKE 35- 38 I4 K Teff2 ? Effective temperature from HET/HRS 40- 43 F4.2 [cm/s2] logg2 ? Surface gravity from HET/HRS 45- 48 F4.2 km/s Vt2 ? Microturbulent velocity from HET/HRS 50- 54 F5.2 [Sun] [Fe/H]2 ? Metallicity from HET/HRS 55 A1 --- f_[Fe/H]2 [a] a = sky contamination in this spectrum -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Star Star name (G1) 14- 18 F5.2 [Sun] [Fe/H] Abundance of [Fe/H](MIKE) 20 A1 --- l_Li1 Limit flag on Li1 21- 24 F4.2 [-] Li1 logε(LiI)(MIKE) 26- 29 F4.2 [-] e_Li1 Uncertainty in Li1 31- 34 F4.2 [-] C logε(C)(MIKE) 36- 39 F4.2 [-] e_C Uncertainty in C 41- 45 F5.2 [Sun] [C/Fe] Abundance of [C/Fe](MIKE) 47- 50 F4.2 [-] Mg1 logε(MgI)(MIKE) 52- 55 F4.2 [-] e_Mg1 Uncertainty in Mg1 57- 60 F4.2 [Sun] [Mg/Fe] Abundance of [Mg/Fe](MIKE) 62 I1 --- o_Mg1 Number of MgI lines used in abundance 64- 67 F4.2 [-] Al1 ? logε(AlI)(MIKE) 69- 72 F4.2 [-] e_Al1 ? Uncertainty in Al1 74- 78 F5.2 [Sun] [Al/Fe] ? Abundance of [Al/Fe](MIKE) 80 I1 --- o_Al1 ? Number of AlI lines used in abundance 82- 85 F4.2 [-] Si1 ? logε(SiI)(MIKE) 87- 90 F4.2 [-] e_Si1 ? Uncertainty in Si1 92- 95 F4.2 [Sun] [Si/Fe] ? Abundance of [Si/Fe](MIKE) 97 I1 --- o_Si1 Number of SiI lines used in abundance 99-102 F4.2 [-] Ca1 logε(CaI)(MIKE) 104-107 F4.2 [-] e_Ca1 Uncertainty in Ca1 109-112 F4.2 [Sun] [Ca/Fe] Abundance of [Ca/Fe](MIKE) 114-115 I2 --- o_Ca1 Number of CaI lines used in abundance 117-121 F5.2 [-] Sc2 logε(ScII)(MIKE) 123-126 F4.2 [-] e_Sc2 Uncertainty in Sc2 128-132 F5.2 [Sun] [Sc/Fe] Abundance of [Sc/Fe](MIKE) 134-135 I2 --- o_Sc2 Number of ScII lines used in abundance 137-140 F4.2 [-] Ti1 logε(TiI)(MIKE) 142-145 F4.2 [-] e_Ti1 Uncertainty in Ti1 147-151 F5.2 [Sun] [Ti1/Fe] Abundance of [Ti1/Fe](MIKE) 153-154 I2 --- o_Ti1 Number of TiI lines used in abundance 156-159 F4.2 [-] Ti2 logε(TiII)(MIKE) 161-164 F4.2 [-] e_Ti2 Uncertainty in Ti2 166-170 F5.2 [Sun] [Ti2/Fe] Abundance of [Ti2/Fe](MIKE) 172-173 I2 --- o_Ti2 Number of TiII lines used in abundance 175-178 F4.2 [-] Cr1 ? logε(CrI)(MIKE) 180-183 F4.2 [-] e_Cr1 ? Uncertainty in Cr1 185-189 F5.2 [Sun] [Cr1/Fe] ? Abundance of [Cr1/Fe](MIKE) 191-192 I2 --- o_Cr1 ? Number of CrI lines used in abundance 194-197 F4.2 [-] Cr2 ? logε(CrII)_MIEK 199-202 F4.2 [-] e_Cr2 ? Uncertainty in Cr2 204-208 F5.2 [Sun] [Cr2/Fe] ? Abundance of [Cr2/Fe](MIKE) 210 I1 --- o_Cr2 Number of CrII lines used in abundance 212-215 F4.2 [-] Mn1 ? logε(MnI)(MIKE) 217-220 F4.2 [-] e_Mn1 ? Uncertainty in Mn1 222-226 F5.2 [Sun] [Mn/Fe] ? Abundance of [Mn/Fe](MIKE) 228 I1 --- o_Mn1 ? Number of MnI lines used in abundance 230-233 F4.2 [-] Co1 logε(CoI)(MIKE) 235-238 F4.2 [-] e_Co1 Uncertainty in Co1 240-244 F5.2 [Sun] [Co/Fe] Abundance of [Co/Fe](MIKE) 246-247 I2 --- o_Co1 Number of CoI lines used in abundance 249-252 F4.2 [-] Ni1 logε(NiI)(MIKE) 254-257 F4.2 [-] e_Ni1 Uncertainty in Ni1 259-263 F5.2 [Sun] [Ni/Fe] Abundance of [Ni/Fe](MIKE) 265-266 I2 --- o_Ni1 Number of NiI lines used in abundance 268 A1 --- l_Zn1 Limit flag on Zn1 269-272 F4.2 [-] Zn1 logε(ZnI)(MIKE) 274 A1 --- leZn1 Limit flag on eZn1 275-278 F4.2 [-] e_Zn1 Uncertainty in Zn1 280-283 F4.2 [Sun] [Zn/Fe] Abundance of [Zn/Fe](MIKE) 285 I1 --- o_Zn1 Number of ZnI lines used in abundance 287-291 F5.2 [-] Sr2 logε(SrII)(MIKE) 293-296 F4.2 [-] e_Sr2 Uncertainty in Sr2 298-302 F5.2 [Sun] [Sr/Fe] Abundance of [Sr/Fe](MIKE) 304 I1 --- o_Sr2 Number of SrII lines used in abundance 306 A1 --- l_Y2 Limit flag on Y2 307-311 F5.2 [-] Y2 logε(Y.II)(MIKE) 313 A1 --- l_eY2 Limit flag on eY2 314-318 F5.2 [-] eY2 Uncertainty in Y2 320-323 F4.2 [Sun] [Y/Fe] Abundance of [Y/Fe](MIKE) 325 I1 --- o_Y2 Number of Y.II lines used in abundance 327 A1 --- l_Zr2 Limit flag on Zr2 328-332 F5.2 [-] Zr2 logε(ZrII)(MIKE) 334-337 F4.2 [-] e_Zr2 Uncertainty in Zr2 339 A1 --- l_[Zr/Fe] Limit flag on [Zr2/Fe] 340-344 F5.2 [Sun] [Zr/Fe] Abundance of [Zr/Fe](MIKE) 346 I1 --- o_Zr2 Number of ZrII lines used in abundance 348-352 F5.2 [-] Ba2 logε(BaII)(MIKE) 354-358 F5.2 [-] [Ba2/Fe] Abundance of [Ba/Fe](MIKE) 360-363 F4.2 [Sun] e_Ba2 Uncertainty in Ba2 365 I1 --- o_Ba2 Number of BaII lines used in abundance 367 A1 --- l_La2 Limit flag on La2 368-372 F5.2 [-] La2 logε(LaII)(MIKE) 374-377 F4.2 [-] e_La2 Uncertainty in La2 379 A1 --- l_[La/Fe] Limit flag on [La/Fe] 380-384 F5.2 [Sun] [La/Fe] Abundance of [La/Fe](MIKE) 386 I1 --- o_La2 Number of LaII lines used in abundance 388 A1 --- l_Eu2 Limit flag on Eu2 389-393 F5.2 [-] Eu2 logε(EuII)(MIKE) 395-398 F4.2 [-] e_Eu2 Uncertainty in Eu2 400 A1 --- l_[Eu/Fe] Limit flag on [Eu/Fe] 401-405 F5.2 [Sun] [Eu/Fe] Abundance of [Eu/Fe](MIKE) 407 I1 --- o_Eu2 Number of EuII lines used in abundance 409-413 F5.2 [Sun] [Fe/H]H ? Abundance of [Fe/H](HRS) 415-419 F5.2 [Sun] [Cg/Fe]H ? Abundance of [Cg/Fe](HRS) 421-424 F4.2 [Sun] [Mg/Fe]H ? Abundance of [Mg/Fe](HRS) 426-429 F4.2 [Sun] [Ca/Fe]H ? Abundance of [Ca/Fe](HRS) 431-435 F5.2 [Sun] [Sc/Fe]H ? Abundance of [Sc/Fe](HRS) 437-440 F4.2 [Sun] [Ti/Fe]H ? Abundance of [Ti/Fe](HRS) 442-446 F5.2 [Sun] [Cr/Fe]H ? Abundance of [Cr/Fe](HRS) 448-452 F5.2 [Sun] [Mn/Fe]H ? Abundance of [Mn/Fe](HRS) 454-458 F5.2 [Sun] [Zn/Fe]H ? Abundance of [Zn/Fe](HRS) 460-464 F5.2 [Sun] [Sr/Fe]H ? Abundance of [Sr/Fe](HRS) 466-470 F5.2 [Sun] [Y/Fe]H ? Abundance of [Y/Fe](HRS) 472-476 F5.2 [Sun] [Ba/Fe]H ? Abundance of [Ba/Fe](HRS) -------------------------------------------------------------------------------- Global notes: Note (G1): Due to the low-metallicity of CD-38 245, the corresponding MIKE spectrum shows very few absorption lines; thus, we included this star only in the calibration of the stellar parameter offset. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Roederer et al. Paper I. 2008ApJ...679.1549R 2008ApJ...679.1549R Cat. J/ApJ/679/1549
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 18-Apr-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line