J/ApJ/750/114    Kepler TTVs. IV. 4 multiple-planet systems    (Fabrycky+, 2012)

Transit timing observations from Kepler. IV. Confirmation of four multiple-planet systems by simple physical models. Fabrycky D.C., Ford E.B., Steffen J.H., Rowe J.F., Carter J.A., Moorhead A.V., Batalha N.M., Borucki W.J., Bryson S., Buchhave L.A., Christiansen J.L., Ciardi D.R., Cochran W.D., Endl M., Fanelli M.N., Fischer D., Fressin F., Geary J., Haas M.R., Hall J.R., Holman M.J., Jenkins J.M., Koch D.G., Latham D.W., Li J., Lissauer J.J., Lucas P., Marcy G.W., Mazeh T., McCauliff S., Quinn S., Ragozzine D., Sasselov D., Shporer A. <Astrophys. J., 750, 114 (2012)> =2012ApJ...750..114F 2012ApJ...750..114F
ADC_Keywords: Stars, double and multiple ; Abundances, [Fe/H] ; Planets Keywords: methods: statistical - planetary systems - planets and satellites: detection - planets and satellites: dynamical evolution and stability - stars: individual (KIC 10358759, KOI-738, Kepler-29, KIC 3832474, KOI-806, Kepler-30) - stars: individual (KIC 9347899, KOI-935, Kepler-31, KIC 9787239, KOI-952, Kepler-32) Abstract: Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present four sets of light curves from the Kepler spacecraft, each which of shows multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates that the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets' masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems' architectures, even in cases for which high-precision Doppler follow-up is impractical. Description: For stars Kepler-29, Kepler-30, and Kepler-32, we obtained spectra from several different telescopes as part of the Kepler team's regular ground-based follow-up program. For Kepler-31 we did not obtain a spectrum, but instead adopted Teff, logg, and [Fe/H] values from the Kepler input catalog (KIC; Brown et al. 2011, Cat. J/AJ/142/112; See Cat. V/133). The data we use for this study are long-cadence light curves from Quarters 1 through 6 (and additionally for Kepler-31 only, Quarters 7 and 8), available at the Multimission Archive at STScI (MAST). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 81 4 Properties of target stars table2.dat 83 4 Stellar properties of hosts table3.dat 34 404 Transit times for Kepler transiting planet candidates -------------------------------------------------------------------------------- See also: V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) J/ApJS/204/24 : Kepler planetary candidates. III. (Batalha+, 2013) J/ApJS/208/16 : Kepler transit timing observations. VIII. (Mazeh+, 2013) J/MNRAS/421/2342 : Kepler systems transit timing observations (Steffen+, 2012) J/ApJ/750/113 : TTVs from Kepler. II. 2 multiplanet systems (Ford+, 2012) J/ApJS/199/24 : The first three quarters of Kepler mission (Tenenbaum+, 2012) J/PASP/124/1279 : Q3 Kepler's combined photometry (Christiansen+, 2012) J/ApJS/199/30 : KIC stars effective temperature scale (Pinsonneault+, 2012) J/ApJS/197/8 : Kepler's cand. multiple transiting planets (Lissauer+, 2011) J/ApJS/197/2 : Transit timing observations from Kepler. I. (Ford+, 2011) J/A+A/536/L9 : Detections of transit variations in KOI 806 (Tingley+, 2011) J/AJ/142/112 : KIC photometric calibration (Brown+, 2011) http://archive.stsci.edu/kepler/ : MAST Kepler archive Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- --- [Kepler-] 8- 9 I2 --- Kp Kepler identification number 11- 13 I3 --- KOI KOI identification number 15- 22 I8 --- KIC KIC identification number (Cat. V/133) 24- 29 F6.3 mag Kpmag [15/16] Kepler Kp-band magnitude 31- 35 F5.3 --- C0 [0.05/0.2] Contamination for season 0 (1) 37- 41 F5.3 --- C1 [0.04/0.2] Contamination for season 1 (1) 43- 47 F5.3 --- C2 [0.09/0.2] Contamination for season 2 (1) 49- 53 F5.3 --- C3 [0.05/0.2] Contamination for season 3 (1) 55- 57 I3 --- CDPP [176/652] Combined differential photometric precision on 6 hr timescales 59- 60 I2 h RAh [19] Hour of right ascension (J2000) 62- 63 I2 min RAm [1/53] Minute of right ascension (J2000) 65- 69 F5.2 s RAs Second of right ascension (J2000) 71 A1 --- DE- [+] Sign of declination (J2000) 72- 73 I2 deg DEd [38/47] Degree of declination (J2000) 75- 76 I2 arcmin DEm Arcminute of declination (J2000) 78- 81 F4.1 arcsec DEs Arcsecond of declination (J2000) -------------------------------------------------------------------------------- Note (1): Contamination for each season 0-3 (season = (quarter+2) mod 4): the fractional amount of light leaking in to the target's aperture from other stars, known from the Kepler Input Catalog. We defined a contamination-corrected light curve via fcorr=(f-c)/(1-c), where c is the fractional amount of light leaking into the aperture from known nearby stars, the "contamination" reported on MAST for each target for each quarter. See section 2.2. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- --- [Kepler-] 8- 9 I2 --- Kp Kepler identification number 11- 14 I4 K Teff [3900/6340] Effective temperature 16- 18 I3 K e_Teff [54/250] Teff uncertainty (2) 20- 22 A3 --- n_Teff Observatory code (3) 24- 28 F5.3 [cm/s2] logg [4.6/5] Surface gravity 30- 34 F5.3 [cm/s2] e_logg [0.2/0.3] logg uncertainty (2) 36 A1 --- n_logg Observatory code (3) 38- 41 F4.2 km/s vsini [1.9/4]? Rotational velocity 43- 46 F4.2 km/s e_vsini [0.2/2]? vsini uncertainty (2) 48 A1 --- n_vsini Observatory code (3) 50- 55 F6.3 [Sun] [Fe/H] [-0.1/0.2] Metallicity 57- 61 F5.3 [Sun] e_[Fe/H] [0.2/0.4] [Fe/H] uncertainty (2) 63 A1 --- n_[Fe/H] Observatory code (3) 65- 68 F4.2 Msun M* [0.5/1.3] Stellar mass 70- 73 F4.2 Msun e_M* [0.05/0.2] M* uncertainty (2) 75- 78 F4.2 Rsun R* [0.5/1.3] Stellar radius 80- 83 F4.2 Rsun e_R* [0.04/0.3] R* uncertainty (2) -------------------------------------------------------------------------------- Note (2): Quoted uncertainties do not include systematic uncertainties due to stellar models. Note (3): Spectroscopic parameter are from observatory as follows: K = Keck Observatory, L = Lick Observatory, M = McDonald Observatory, N = NOAO. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 F6.2 --- KOI Kepler Object of interest identifier 8- 10 I3 --- n [0/106] Transit number 12- 19 F8.4 d tn [66/718] Barycentric Julian date of transit; BJD-2454900 (1) 21- 27 F7.4 d TTV [-0.44/0.5] Transit Timing Variation 29- 34 F6.4 d e_TTV [0.0009/0.06] The 1σ uncertainty in TTV -------------------------------------------------------------------------------- Note (1): Best-fit linear ephemerides: 738.01: tn = 82.749505 + n * 10.337583 738.02: tn = 78.470830 + n * 13.290708 806.01: tn = 87.219806 + n * 143.21276 806.02: tn = 176.90373 + n * 60.325144 806.03: tn = 83.27106 + n * 29.286760 935.01: tn = 92.141236 + n * 20.861327 935.02: tn = 74.191197 + n * 42.631838 935.03: tn = 67.942254 + n * 87.645130 952.01: tn = 74.901747 + n * 5.9012452 952.02: tn = 77.377850 + n * 8.7521841 952.03: tn = 88.211206 + n * 22.780232 952.04: tn = 66.614760 + n * 2.8959703 -------------------------------------------------------------------------------- History: From electronic version of the journal References: Ford et al. Paper I. 2011ApJS..197....2F 2011ApJS..197....2F Cat. J/ApJS/197/2 Ford et al. Paper II. 2012ApJ...750..113F 2012ApJ...750..113F Cat. J/ApJ/750/113 Steffen et al. Paper III. 2012MNRAS.421.2342S 2012MNRAS.421.2342S Cat. J/MNRAS/421/2342 Ford et al. Paper V. 2012ApJ...756..185F 2012ApJ...756..185F Steffen et al. Paper VI. 2012ApJ...756..186S 2012ApJ...756..186S Steffen et al. Paper VII. 2013MNRAS.428.1077S 2013MNRAS.428.1077S Mazeh et al. Paper VIII. 2013ApJS..208...16M 2013ApJS..208...16M Cat. J/ApJS/208/16
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 09-Dec-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line