J/ApJ/750/114 Kepler TTVs. IV. 4 multiple-planet systems (Fabrycky+, 2012)
Transit timing observations from Kepler.
IV. Confirmation of four multiple-planet systems by simple physical models.
Fabrycky D.C., Ford E.B., Steffen J.H., Rowe J.F., Carter J.A.,
Moorhead A.V., Batalha N.M., Borucki W.J., Bryson S., Buchhave L.A.,
Christiansen J.L., Ciardi D.R., Cochran W.D., Endl M., Fanelli M.N.,
Fischer D., Fressin F., Geary J., Haas M.R., Hall J.R., Holman M.J.,
Jenkins J.M., Koch D.G., Latham D.W., Li J., Lissauer J.J., Lucas P.,
Marcy G.W., Mazeh T., McCauliff S., Quinn S., Ragozzine D., Sasselov D.,
Shporer A.
<Astrophys. J., 750, 114 (2012)>
=2012ApJ...750..114F 2012ApJ...750..114F
ADC_Keywords: Stars, double and multiple ; Abundances, [Fe/H] ; Planets
Keywords: methods: statistical - planetary systems -
planets and satellites: detection -
planets and satellites: dynamical evolution and stability -
stars: individual (KIC 10358759, KOI-738, Kepler-29, KIC 3832474,
KOI-806, Kepler-30) - stars: individual (KIC 9347899, KOI-935,
Kepler-31, KIC 9787239, KOI-952, Kepler-32)
Abstract:
Eighty planetary systems of two or more planets are known to orbit
stars other than the Sun. For most, the data can be sufficiently
explained by non-interacting Keplerian orbits, so the dynamical
interactions of these systems have not been observed. Here we present
four sets of light curves from the Kepler spacecraft, each which of
shows multiple planets transiting the same star. Departure of the
timing of these transits from strict periodicity indicates that the
planets are perturbing each other: the observed timing variations
match the forcing frequency of the other planet. This confirms that
these objects are in the same system. Next we limit their masses to
the planetary regime by requiring the system remain stable for
astronomical timescales. Finally, we report dynamical fits to the
transit times, yielding possible values for the planets' masses and
eccentricities. As the timespan of timing data increases, dynamical
fits may allow detailed constraints on the systems' architectures,
even in cases for which high-precision Doppler follow-up is
impractical.
Description:
For stars Kepler-29, Kepler-30, and Kepler-32, we obtained spectra
from several different telescopes as part of the Kepler team's regular
ground-based follow-up program. For Kepler-31 we did not obtain a
spectrum, but instead adopted Teff, logg, and [Fe/H] values from the
Kepler input catalog (KIC; Brown et al. 2011, Cat. J/AJ/142/112; See
Cat. V/133).
The data we use for this study are long-cadence light curves from
Quarters 1 through 6 (and additionally for Kepler-31 only, Quarters 7
and 8), available at the Multimission Archive at STScI (MAST).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 81 4 Properties of target stars
table2.dat 83 4 Stellar properties of hosts
table3.dat 34 404 Transit times for Kepler transiting planet candidates
--------------------------------------------------------------------------------
See also:
V/133 : Kepler Input Catalog (Kepler Mission Team, 2009)
J/ApJS/204/24 : Kepler planetary candidates. III. (Batalha+, 2013)
J/ApJS/208/16 : Kepler transit timing observations. VIII. (Mazeh+, 2013)
J/MNRAS/421/2342 : Kepler systems transit timing observations (Steffen+, 2012)
J/ApJ/750/113 : TTVs from Kepler. II. 2 multiplanet systems (Ford+, 2012)
J/ApJS/199/24 : The first three quarters of Kepler mission (Tenenbaum+, 2012)
J/PASP/124/1279 : Q3 Kepler's combined photometry (Christiansen+, 2012)
J/ApJS/199/30 : KIC stars effective temperature scale (Pinsonneault+, 2012)
J/ApJS/197/8 : Kepler's cand. multiple transiting planets (Lissauer+, 2011)
J/ApJS/197/2 : Transit timing observations from Kepler. I. (Ford+, 2011)
J/A+A/536/L9 : Detections of transit variations in KOI 806 (Tingley+, 2011)
J/AJ/142/112 : KIC photometric calibration (Brown+, 2011)
http://archive.stsci.edu/kepler/ : MAST Kepler archive
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- --- [Kepler-]
8- 9 I2 --- Kp Kepler identification number
11- 13 I3 --- KOI KOI identification number
15- 22 I8 --- KIC KIC identification number (Cat. V/133)
24- 29 F6.3 mag Kpmag [15/16] Kepler Kp-band magnitude
31- 35 F5.3 --- C0 [0.05/0.2] Contamination for season 0 (1)
37- 41 F5.3 --- C1 [0.04/0.2] Contamination for season 1 (1)
43- 47 F5.3 --- C2 [0.09/0.2] Contamination for season 2 (1)
49- 53 F5.3 --- C3 [0.05/0.2] Contamination for season 3 (1)
55- 57 I3 --- CDPP [176/652] Combined differential photometric
precision on 6 hr timescales
59- 60 I2 h RAh [19] Hour of right ascension (J2000)
62- 63 I2 min RAm [1/53] Minute of right ascension (J2000)
65- 69 F5.2 s RAs Second of right ascension (J2000)
71 A1 --- DE- [+] Sign of declination (J2000)
72- 73 I2 deg DEd [38/47] Degree of declination (J2000)
75- 76 I2 arcmin DEm Arcminute of declination (J2000)
78- 81 F4.1 arcsec DEs Arcsecond of declination (J2000)
--------------------------------------------------------------------------------
Note (1): Contamination for each season 0-3 (season = (quarter+2) mod 4):
the fractional amount of light leaking in to the target's aperture
from other stars, known from the Kepler Input Catalog. We defined a
contamination-corrected light curve via fcorr=(f-c)/(1-c), where c
is the fractional amount of light leaking into the aperture from known
nearby stars, the "contamination" reported on MAST for each target for
each quarter. See section 2.2.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- --- [Kepler-]
8- 9 I2 --- Kp Kepler identification number
11- 14 I4 K Teff [3900/6340] Effective temperature
16- 18 I3 K e_Teff [54/250] Teff uncertainty (2)
20- 22 A3 --- n_Teff Observatory code (3)
24- 28 F5.3 [cm/s2] logg [4.6/5] Surface gravity
30- 34 F5.3 [cm/s2] e_logg [0.2/0.3] logg uncertainty (2)
36 A1 --- n_logg Observatory code (3)
38- 41 F4.2 km/s vsini [1.9/4]? Rotational velocity
43- 46 F4.2 km/s e_vsini [0.2/2]? vsini uncertainty (2)
48 A1 --- n_vsini Observatory code (3)
50- 55 F6.3 [Sun] [Fe/H] [-0.1/0.2] Metallicity
57- 61 F5.3 [Sun] e_[Fe/H] [0.2/0.4] [Fe/H] uncertainty (2)
63 A1 --- n_[Fe/H] Observatory code (3)
65- 68 F4.2 Msun M* [0.5/1.3] Stellar mass
70- 73 F4.2 Msun e_M* [0.05/0.2] M* uncertainty (2)
75- 78 F4.2 Rsun R* [0.5/1.3] Stellar radius
80- 83 F4.2 Rsun e_R* [0.04/0.3] R* uncertainty (2)
--------------------------------------------------------------------------------
Note (2): Quoted uncertainties do not include systematic uncertainties
due to stellar models.
Note (3): Spectroscopic parameter are from observatory as follows:
K = Keck Observatory,
L = Lick Observatory,
M = McDonald Observatory,
N = NOAO.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 F6.2 --- KOI Kepler Object of interest identifier
8- 10 I3 --- n [0/106] Transit number
12- 19 F8.4 d tn [66/718] Barycentric Julian date of transit;
BJD-2454900 (1)
21- 27 F7.4 d TTV [-0.44/0.5] Transit Timing Variation
29- 34 F6.4 d e_TTV [0.0009/0.06] The 1σ uncertainty in TTV
--------------------------------------------------------------------------------
Note (1): Best-fit linear ephemerides:
738.01: tn = 82.749505 + n * 10.337583
738.02: tn = 78.470830 + n * 13.290708
806.01: tn = 87.219806 + n * 143.21276
806.02: tn = 176.90373 + n * 60.325144
806.03: tn = 83.27106 + n * 29.286760
935.01: tn = 92.141236 + n * 20.861327
935.02: tn = 74.191197 + n * 42.631838
935.03: tn = 67.942254 + n * 87.645130
952.01: tn = 74.901747 + n * 5.9012452
952.02: tn = 77.377850 + n * 8.7521841
952.03: tn = 88.211206 + n * 22.780232
952.04: tn = 66.614760 + n * 2.8959703
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Ford et al. Paper I. 2011ApJS..197....2F 2011ApJS..197....2F Cat. J/ApJS/197/2
Ford et al. Paper II. 2012ApJ...750..113F 2012ApJ...750..113F Cat. J/ApJ/750/113
Steffen et al. Paper III. 2012MNRAS.421.2342S 2012MNRAS.421.2342S Cat. J/MNRAS/421/2342
Ford et al. Paper V. 2012ApJ...756..185F 2012ApJ...756..185F
Steffen et al. Paper VI. 2012ApJ...756..186S 2012ApJ...756..186S
Steffen et al. Paper VII. 2013MNRAS.428.1077S 2013MNRAS.428.1077S
Mazeh et al. Paper VIII. 2013ApJS..208...16M 2013ApJS..208...16M Cat. J/ApJS/208/16
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 09-Dec-2013