J/ApJ/765/9   Predicted CO and [CII] fluxes of HUDF galaxies   (da Cunha+, 2013)

Empirical predictions for (sub-)millimeter line and continuum deep fields. da Cunha E., Walter F., Decarli R., Bertoldi F., Carilli C., Daddi E., Elbaz D., Ivison R., Maiolino R., Riechers D., Rix H.-W., Sargent M., Smail I., Weiss A. <Astrophys. J., 765, 9 (2013)> =2013ApJ...765....9D 2013ApJ...765....9D
ADC_Keywords: Galaxies, radio ; Millimetric/submm sources ; Redshifts ; Models Keywords: dust, extinction; galaxies: evolution; galaxies: ISM; galaxies: statistics; submillimeter: galaxies Abstract: Modern (sub-)millimeter/radio interferometers such as ALMA, JVLA, and the PdBI successor NOEMA will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[C II] lines and dust continuum emission in the (sub-)millimeter regime. In this paper, we present empirical predictions for such line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared Advanced Camera for Surveys and NICMOS data on the Hubble Ultra Deep Field (over an area of about 12arcmin2). Using a physically motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13099 galaxies with redshifts up to z=5, and obtain median-likelihood estimates of their stellar mass, star formation rate, dust attenuation, and dust luminosity. We combine the attenuated stellar spectra with a library of infrared emission models spanning a wide range of dust temperatures to derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA, and JVLA bands. As a consistency check, we verify that the 850µm number counts and extragalactic background light derived using our predictions are consistent with previous observations. Using empirical relations between the observed CO/[C II] line luminosities and the infrared luminosity of star-forming galaxies, we infer the luminosity of the CO(1-0) and [C II] lines from the estimated infrared luminosity of each galaxy in our sample. Description: We start by using the photometric catalog of the Hubble UDF (centered at RA=03:32:39.0, DE=-27:47:29.1) described in Coe et al. (2006, Cat. J/AJ/132/926). This contains aperture-matched, point-spread-function (PSF)-corrected Advanced Camera for Surveys (ACS) BVi'z' and NICMOS3 JH photometry, as well as Bayesian photometric redshifts for all the detected sources, accurate to within 0.04(1+zspec). We complement the photometry in the UDF catalog with additional photometry out to the far-infrared. We use 54 galaxies detected in the Herschel/SPIRE bands available in the publicly released HerMES survey (PI: S. Oliver; Oliver et al. 2010A&A...518L..21O 2010A&A...518L..21O) images in GOODS-South. Herschel/PACS images of the GOODS-South are available as part of the GOODS-Herschel program (PI: D. Elbaz). For each of these 250um selected galaxies, well-sampled SEDs from the ultraviolet to the far-infrared are available, including photometry in the following bands: U, B, V, i, z, J, K, Spitzer/IRAC 3.6, 4.5, 5.8, and 8.0um, Spitzer/IRS at 16um, Spitzer/MIPS at 24um. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table6.dat 190 13099 Predicted continuum fluxes and confidence ranges table7.dat 137 13099 Predicted CO and [CII] line fluxes -------------------------------------------------------------------------------- See also: VI/139 : Herschel Observation Log (Herschel Science Centre, 2013) VIII/95 : Herschel Multi-tiered Extragalactic Survey (Oliver+, 2012) III/250 : The VIMOS VLT deep survey (VVDS-DEEP) (Le Fevre+ 2005) J/A+A/533/A119 : GOODS-Herschel North and South catalogs (Elbaz+, 2011) J/ApJ/707/1201 : LABOCA ECDFS Submillimeter Survey (LESS) (Weiss+, 2009) J/ApJ/682/985 : FIREWORKS photometry of GOODS CDF-S (Wuyts+, 2008) J/MNRAS/384/1611 : Submm observations in gravitational lenses (Knudsen+, 2008) J/ApJS/178/280 : Compendium of ISO far-IR extragalactic data (Brauher+, 2008) J/ApJS/172/70 : zCOSMOS-bright catalog (Lilly+, 2007) J/MNRAS/372/1621 : SCUBA Half-Degree Extragalactic Survey. II (Coppin+, 2006) J/MNRAS/370/1057 : Blank-field SCUBA surveys (Scott+ 2006) J/AJ/132/926 : Galaxies in the Hubble Ultra Deep Field (Coe+, 2006) J/MNRAS/358/149 : HDFN SCUBA Super-map. III (Pope+, 2005) J/MNRAS/344/887 : Sub-mm observations of the HDF (Serjeant+, 2003) J/ApJ/592/728 : Lyman break galaxies at redshift z∼3 (Steidel+, 2003) J/ApJ/586/794 : Multiwavelength luminosities of galaxies (Bell, 2003) J/ApJ/554/803 : New VLA Sky Survey cat. of IRAS 2Jy Galaxies (Yun+ 2001) Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 I5 --- [CBS2006] [1/60319] Coe et al. 2006(J/AJ/132/926) number 7- 8 I2 h RAh [3] Hour of Right Ascension (J2000) 10- 11 I2 min RAm [32] Minute of Right Ascension (J2000) 13- 17 F5.2 s RAs [27/51] Second of Right Ascension (J2000) 19 A1 --- DE- [-] Sign of the Declination (J2000) 20- 21 I2 deg DEd [27] Degree of Declination (J2000) 23- 24 I2 arcmin DEm [44/49] Arcminute of Declination (J2000) 26- 30 F5.2 arcsec DEs Arcsecond of Declination (J2000) 32- 36 F5.3 --- zph [0.01/5] Photometric redshift 38- 44 F7.3 [Jy] logF38 Log of 38GHz flux density (1) 46- 49 F4.2 [Jy] E_logF38 Upper limit uncertainty on logF38 51- 54 F4.2 [Jy] e_logF38 Lower limit uncertainty on logF38 56- 61 F6.3 [Jy] logF80 Log of 80GHz flux density (1) 63- 66 F4.2 [Jy] E_logF80 Upper limit uncertainty on logF80 68- 71 F4.2 [Jy] e_logF80 Lower limit uncertainty on logF80 73- 78 F6.3 [Jy] logF100 Log of 100GHz flux density (1) 80- 83 F4.2 [Jy] E_logF100 Upper limit uncertainty on logF100 85- 88 F4.2 [Jy] e_logF100 Lower limit uncertainty on logF100 90- 95 F6.3 [Jy] logF144 Log of 144GHz flux density (1) 97-100 F4.2 [Jy] E_logF144 Upper limit uncertainty on logF144 102-105 F4.2 [Jy] e_logF144 Lower limit uncertainty on logF144 107-112 F6.3 [Jy] logF230 Log of 230GHz flux density (1) 114-117 F4.2 [Jy] E_logF230 Upper limit uncertainty on logF230 119-122 F4.2 [Jy] e_logF230 Lower limit uncertainty on logF230 124-129 F6.3 [Jy] logF345 Log of 345GHz flux density (1) 131-134 F4.2 [Jy] E_logF345 Upper limit uncertainty on logF345 136-139 F4.2 [Jy] e_logF345 Lower limit uncertainty on logF345 141-146 F6.3 [Jy] logF430 Log of 430GHz flux density (1) 148-151 F4.2 [Jy] E_logF430 Upper limit uncertainty on logF430 153-156 F4.2 [Jy] e_logF430 Lower limit uncertainty on logF430 158-163 F6.3 [Jy] logF660 Log of 660GHz flux density (1) 165-168 F4.2 [Jy] E_logF660 Upper limit uncertainty on logF660 170-173 F4.2 [Jy] e_logF660 Lower limit uncertainty on logF660 175-180 F6.3 [Jy] logF870 Log of 870GHz flux density (1) 182-185 F4.2 [Jy] E_logF870 Upper limit uncertainty on logF870 187-190 F4.2 [Jy] e_logF870 Lower limit uncertainty on logF870 -------------------------------------------------------------------------------- Note (1): The predicted fluxes are the median of the likelihood distribution computed as described in Section 3.4, and the confidence ranges correspond to the 16th-84th percentile of the likelihood distribution. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 I5 --- [CBS2006] Coe et al. 2006, cat. J/AJ/132/926, number 7- 11 F5.3 --- zph [0.01/5] Photometric redshift 13- 20 F8.5 [Jy] log(1-0) CO(1-0) flux density (115.27GHz) 22- 29 F8.5 [Jy] log(2-1)0 CO(2-1) flux density (230.54GHz), MW model (2) 31- 38 F8.5 [Jy] log(2-1)1 CO(2-1) flux density (230.54GHz), M82 model (2) 40- 47 F8.5 [Jy] log(3-2)0 CO(3-2) flux density (345.80GHz), MW model (2) 49- 56 F8.5 [Jy] log(3-2)1 CO(3-2) flux density (345.80GHz), M82 model (2) 58- 65 F8.5 [Jy] log(4-3)0 CO(4-3) flux density (461.04GHz), MW model (2) 67- 74 F8.5 [Jy] log(4-3)1 CO(4-3) flux density (461.04GHz), M82 model (2) 76- 83 F8.5 [Jy] log(5-4)0 CO(5-4) flux density (576.27GHz), MW model (2) 85- 92 F8.5 [Jy] log(5-4)1 CO(5-4) flux density (576.27GHz), M82 model (2) 94-101 F8.5 [Jy] log(6-5)0 CO(6-5) flux density (691.47GHz), MW model (2) 103-110 F8.5 [Jy] log(6-5)1 CO(6-5) flux density (691.47GHz), M82 model (2) 112-119 F8.5 [Jy] log(7-6)0 CO(7-6) flux density (806.65GHz), MW model (2) 121-128 F8.5 [Jy] log(7-6)1 CO(7-6) flux density (806.65GHz), M82 model (2) 130-137 F8.5 [Jy] log[CII] Model flux density of [CII] line (1900.54GHz) -------------------------------------------------------------------------------- Note (2): Different physical conditions in the gas produce different CO spectral line energy distributions (SLEDs), which translate into different ratios between the CO(1-0) line and the higher J lines. To compute the predicted flux of the CO lines, we assume two possible CO SLEDs from Weiss et al. (2007ASPC..375...25W 2007ASPC..375...25W): the Milky Way (MW) CO SLED and the M82 center CO SLED. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 28-Oct-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line