J/ApJ/767/127     Asteroseismic solutions for 77 Kepler stars     (Huber+, 2013)

Fundamental properties of Kepler planet-candidate host stars using asteroseismology. Huber D., Chaplin W.J., Christensen-Dalsgaard J., Gilliland R.L., Kjeldsen H., Buchhave L.A., Fischer D.A., Lissauer J.J., Rowe J.F., Sanchis-Ojeda R., Basu S., Handberg R., Hekker S., Howard A.W., Isaacson H., Karoff C., Latham D.W., Lund M.N., Lundkvist M., Marcy G.W., Miglio A., Silva Aguirre V., Stello D., Arentoft T., Barclay T., Bedding T.R., Burke C.J., Christiansen J.L., Elsworth Y.P., Haas M.R., Kawaler S.D., Metcalfe T.S., Mullally F., Thompson S.E. <Astrophys. J., 767, 127 (2013)> =2013ApJ...767..127H 2013ApJ...767..127H
ADC_Keywords: Stars, double and multiple ; Planets ; Effective temperatures ; Stars, diameters ; Stars, masses Keywords: planetary systems; stars: late-type; stars: oscillations; techniques: photometric; techniques: spectroscopic Abstract: We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. (2013, J/ApJS/204/24) shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters or due to planet candidates that may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet-candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases. Description: For all stars in our sample high-resolution optical spectra were obtained as part of the Kepler follow-up program (Gautier et al. 2010arXiv1001.0352G 2010arXiv1001.0352G). Spectroscopic observations were taken using four different instruments: the HIRES spectrograph on the 10m telescope at Keck Observatory (Mauna Kea, HI), the FIES spectrograph on the 2.5m Nordic Optical Telescope at the Roque de los Muchachos Observatory (La Palma, Spain), the TRES spectrograph on the 1.5m Tillinghast reflector at the F. L. Whipple Observatory (Mt. Hopkins, AA), and the Tull Coude spectrograph on the 2.7m Harlan J. Smith Telescope at McDonald Observatory (Fort Davis, TX). Typical resolutions of the spectra range from 40000 to 70000. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 94 77 Asteroseismic and spectroscopic observations of 77 Kepler planet candidate hosts table2.dat 89 77 Fundamental properties of 77 Kepler planet-candidate hosts table3.dat 89 107 Re-derived properties of 107 planet candidates in the sample -------------------------------------------------------------------------------- See also: V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) J/ApJS/211/2 : Q1-16 Kepler stars revised stellar properties (Huber+, 2014) J/ApJS/210/19 : Kepler planetary candidates. IV. 22 months (Burke+, 2014) J/ApJS/210/1 : Asteroseismic study of solar-type stars (Chaplin+, 2014) J/ApJS/204/24 : Kepler planetary candidates. III. (Batalha+, 2013) J/ApJ/765/L41 : Asteroseismic classification of KIC objects (Stello+, 2013) J/ApJ/763/41 : Kepler multiple-candidate systems radii (Ciardi+, 2013) J/MNRAS/436/1883 : Properties of KOI host stars (Walkowicz+, 2013) J/MNRAS/434/1422 : Atmospheric param. of FGKM stars (Molenda-Zakowicz+, 2013) J/ApJS/199/30 : KIC stars effective temperature scales (Pinsonneault+, 2012) J/ApJ/757/161 : Spectroscopy of 56 exoplanet host stars (Torres+, 2012) J/ApJ/753/90 : Stellar param. of K5 & later type Kepler stars (Mann+, 2012) J/ApJ/750/114 : Kepler TTVs. IV. 4 multiple-planet systems (Fabrycky+, 2012) J/ApJ/750/113 : Kepler TTVs. II. Confirmed multiplanet systems (Ford+, 2012) J/ApJ/750/L37 : Stellar parameters of low-mass KOIs (Muirhead+, 2012) J/ApJ/749/152 : 22 solar-type stars asteroseismic analysis (Mathur+, 2012) J/PASP/124/1279 : Q3 Kepler's combined photometry (Christiansen+, 2012) J/other/Nat/486.375 : Stellar parameters of KOI stars (Buchhave+, 2012) J/MNRAS/426/1291 : Physical properties of 38 exoplanets (Southworth, 2012) J/MNRAS/423/122 : Abundances of 93 solar-type Kepler targets (Bruntt+, 2012) J/MNRAS/421/2342 : 4 Kepler systems transit timing obs. (Steffen+, 2012) J/MNRAS/419/L34 : Surface gravity for late-type stars (Morel+, 2012) J/A+A/543/A160 : Normalized spectra of 82 Kepler red giants (Thygesen+, 2012) J/AJ/142/112 : KIC photometric calibration (Brown+, 2011) J/A+A/525/A131 : Solar-like oscillations in Kepler red giants (Hekker+, 2011) J/ApJ/736/19 : Kepler planetary candidates. II. (Borucki+, 2011) J/ApJ/729/L10 : KIC stars properties in NGC 6791 and NGC 6819 (Basu+, 2011) J/ApJ/728/117 : Kepler planetary candidates. I. (Borucki+, 2011) J/MNRAS/412/1210 : Kepler asteroseismic targets (Molenda-Zakowicz+, 2011) J/ApJ/718/L97 : Early asteroseismic results from Kepler (Van Grootel+, 2010) J/A+A/512/A54 : Teff and Fbol from Infrared Flux Method (Casagrande+, 2010) J/A+A/506/465 : Solar-like oscillations in red giants (Hekker+, 2009) J/ApJ/664/1185 : Three transits of the exoplanet TrES-2 (Holman+, 2007) J/ApJ/622/1102 : The planet-metallicity correlation. (Fischer+, 2005) J/A+A/415/1153 : [Fe/H] for 98 extra-solar planet-host stars (Santos+, 2004) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I4 --- KOI [1/2640] KOI host star number 6- 13 I8 --- KIC KIC number (V/133) 15- 19 F5.2 mag Kpmag [7.8/14] Kepler magnitude 21- 26 F6.1 uHz numax [35/3546]? Frequency at which the oscillations have maximum power (νmax, equation 2) (1) 28- 32 F5.1 uHz e_numax [0.6/119]? numax uncertainty 34- 39 F6.2 uHz Delnu [5/179]? Frequency separation (Δν, equation 1) (1) 41- 44 F4.2 uHz e_Delnu [0.04/6]? Delnu uncertainty 46- 50 F5.3 --- HBR [1.02/31]? Height-to-background ratio of the power excess (2) 52- 53 I2 --- M [1/31] Number of months of Kepler data used for the analysis 55- 56 A2 --- Cad Type of Kepler data used for the detection (SC = short-cadence, LC = long-cadence) 58- 61 F4.1 km/s vsini [0.5/16]? Rotational velocity 63- 65 F3.1 km/s e_vsini [0.5/24]? vsini uncertainty 67- 69 I3 --- S/N [0.8/300]? Average S/N of the observations 71- 75 F5.3 --- CCF [0.7/3]? Average cross-correlation function (3) 77- 78 I2 --- Nsp [1/10]? Number of spectra used in the analysis 80- 82 A3 --- Inst Instrument(s) used to obtain the spectra (4) 84- 92 A9 --- Kepler Kepler name (5) 94 A1 --- Ref Reference to solutions in other papers (G1) -------------------------------------------------------------------------------- Note (1): The solar reference values for the asteroseismic observations are νmax,☉=3090±30uHz and Δν=135.1±0.1uHz (Huber et al. 2011ApJ...743..143H 2011ApJ...743..143H). Note (2): "HBR" denotes the height-to-background ratio of the power excess (a measure of signal-to-noise; see, e.g., Kallinger et al. 2010A&A...522A...1K 2010A&A...522A...1K). Note (3): A measure of the quality of the fit compared to the spectral template; see Buchhave et al. 2012, Cat. J/other/Nat/486.375 Note (4): Spectrographs used for the observations as follows: F = FIES (on the 2.5m Nordic Optical Telescope), H = HIRES (on the 10m telescope at Keck Observatory), M = Tull Coude spectrograph (on the 2.7m Harlan J. Smith Telescope at McDonald Observatory), T = TRES (on the 1.5m Tillinghast reflector at the F. L. Whipple Observatory) Note (5): Note that stars with solutions published in separate papers were not re-analyzed in this study, and hence the columns "HBR" as well as spectroscopic information are not available for these host stars. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I4 --- KOI KOI host star number 5 A1 --- f_KOI [*] Flag on KOI-1054 (6) 7- 14 I8 --- KIC KIC number (V/133) 16- 19 I4 K Teff [4553/6463] Effective temperature 21- 23 I3 K e_Teff [44/117] Teff uncertainty 25- 29 F5.2 [Sun] [Fe/H] [-1/0.5] Metallicity 31- 34 F4.2 [Sun] e_[Fe/H] [0.04/0.2] [Fe/H] uncertainty 36- 43 F8.6 g/cm3 rho [0.0019/2.5]? Stellar density (7) 45- 52 F8.6 g/cm3 e_rho [0/0.07]? rho uncertainty 54- 59 F6.3 Rsun Rad [0.7/10.5]? Stellar radius (7) 61- 65 F5.3 Rsun e_Rad [0.01/0.7]? Rad uncertainty 67- 71 F5.3 Msun Mass [0.8/1.8]? Stellar mass (7) 73- 77 F5.3 Msun e_Mass [0.01/0.3]? Mass uncertainty 79- 87 A9 --- Kepler Kepler name 89 A1 --- Ref Reference (G1) -------------------------------------------------------------------------------- Note (6): No full solution was derived for KOI-1054 due to the lack of a reliable Δν measurement. Note (7): Note that ρ is derived directly from scaling relations, while R and M are modeled values using asteroseismic constraints. The asteroseismic surface gravity constrained using νmax is logg=2.47±0.01dex. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 F7.2 --- KOI [1.01/2640.01] Planet candidate name 9 A1 --- f_KOI [*+] Flag on KOI (1) 11- 23 F13.9 d Per [0.8/290] Period (2) 25- 35 F11.9 d e_Per [0/0.002] Period uncertainty 37- 44 F8.6 --- Rp/R* [0.004/0.2] Planet radius vs stellar radius (2) 46- 53 F8.6 --- e_Rp/R* [0/0.004] Rp/R* uncertainty 55- 60 F6.3 Rgeo Rp [0.3/63.7] Planet radius in Earth radius 62- 66 F5.3 Rgeo e_Rp [0.02/2.4] Rp uncertainty 68- 74 F7.5 AU a [0.01/0.9] Planet semi-major axis 76- 82 F7.5 AU e_a [0.0001/0.03] a uncertainty 84- 89 F6.1 Earth Fp [1.2/5586] Flux received by planet (relative to Earth) (3) -------------------------------------------------------------------------------- Note (1): Flag as follows: + = Asteroseismic false positive. * = Low-mass stellar companion detected by follow-up radial-velocity observations. Note that KOI-113.01, KOI-245.04, KOI-371.01 and KOI-1054.01 have been omitted either due to the large uncertainties in the transit parameters given in Batalha et al. (2013, J/ApJS/204/24) or due to evidence that the transit events are false positives. Note (2): Planet period and planet-star size ratio have been adopted from Batalha et al. (2013, J/ApJS/204/24). Note (3): The incident flux F(F{earth}) has been estimated using the planet-star separation given in Batalha et al. (2013, J/ApJS/204/24) and assuming circular orbits (d/R*=a/R*). -------------------------------------------------------------------------------- Global note: Note (G1): References to solutions published in separate papers as follows: a = Barclay et al. (2012ApJ...761...53B 2012ApJ...761...53B), b = Christensen-Dalsgaard et al. (2010ApJ...713L.164C 2010ApJ...713L.164C), c = Batalha et al. (2011ApJ...729...27B 2011ApJ...729...27B), d = Chaplin et al. (2013ApJ...766..101C 2013ApJ...766..101C), e = Borucki et al. (2012ApJ...745..120B 2012ApJ...745..120B), f = Barclay et al. (2013Natur.494..452B 2013Natur.494..452B), g = Gilliland et al. (2013ApJ...766...40G 2013ApJ...766...40G), h = Carter et al. (2012Sci...337..556C 2012Sci...337..556C), i = Howell et al. (2012ApJ...746..123H 2012ApJ...746..123H), j = D. Huber et al. (2014, J/ApJS/211/2). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Emmanuelle Perret [CDS] 20-Nov-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line