J/ApJ/774/136 X-ray obs. of SINGS gal. compared to models (Tzanavaris+, 2013)
Modeling X-ray binary evolution in normal galaxies: insights from SINGS.
Tzanavaris P., Fragos T., Tremmel M., Jenkins L., Zezas A., Lehmer B.D.,
Hornschemeier A., Kalogera V., Ptak A., Basu-Zych A.R.
<Astrophys. J., 774, 136 (2013)>
=2013ApJ...774..136T 2013ApJ...774..136T
ADC_Keywords: Binaries, X-ray ; Models ; Galaxies, nearby
Keywords: binaries: close; galaxies: spiral; stars: evolution; X-rays: binaries
Abstract:
We present the largest-scale comparison to date between observed
extragalactic X-ray binary (XRB) populations and theoretical models of
their production. We construct observational X-ray luminosity
functions (oXLFs) using Chandra observations of 12 late-type galaxies
from the Spitzer Infrared Nearby Galaxy Survey. For each galaxy, we
obtain theoretical XLFs (tXLFs) by combining XRB synthetic models,
constructed with the population synthesis code StarTrack, with
observational star formation histories (SFHs). We identify
highest-likelihood models both for individual galaxies and globally,
averaged over the full galaxy sample. Individual tXLFs successfully
reproduce about half of the oXLFs, but for some galaxies we are unable
to find underlying source populations, indicating that galaxy SFHs and
metallicities are not well matched and/or that XRB modeling requires
calibration on larger observational samples. Given these limitations,
we find that the best models are consistent with a product of common
envelope ejection efficiency and central donor concentration ≃0.1,
and a 50% uniform-50% "twins" initial mass-ratio distribution. We
present and discuss constituent subpopulations of tXLFs according to
donor, accretor, and stellar population characteristics. The
galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs,
estimated via our best global model tXLF, follows the general trend
expected from the LX-star formation rate and LX-stellar mass
relations of Lehmer et al. Our best models are also in agreement with
modeling of the evolution of both XRBs over cosmic time and of the
galaxy X-ray luminosity with redshift.
Description:
We use galaxies selected from SINGS (Kennicutt et al.
2003PASP..115..928K 2003PASP..115..928K). As part of a large Chandra program (XSINGS;
Jenkins et al. 2010HEAD...11.2905J 2010HEAD...11.2905J), the Advanced CCD Imaging
Spectrometer was used to extend the survey's wavelength coverage to
the X-ray regime. Details regarding the sample selection, X-ray
observations, source detection, and characterization will be presented
in a forthcoming publication (A. Zezas et al. 2014, in preparation).
We use a subsample of 12 SINGS galaxies that have SFHs from SED
fitting with the code CIGALE (Noll et al. 2009A&A...507.1793N 2009A&A...507.1793N); see
Figure 1.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 57 12 SINGS galaxy subsample used in this work
table3.dat 41 12 Star formation histories from SED fitting
table4.dat 48 12 Parameters for highest pair likelihood model-galaxy
pairs
table5.dat 54 192 Parameters and global likelihood values for 15 best
models ranked by likelihood
--------------------------------------------------------------------------------
See also:
B/chandra : The Chandra Archive Log (CXC, 1999-2014)
J/ApJ/766/19 : XRB pop. synthesis models in 0<z<20 gal. (Tremmel+, 2013)
J/ApJS/204/14 : Deep Chandra observations of NGC 4649. I. (Luo+, 2013)
J/ApJ/764/41 : X-ray binary evolution across cosmic time (Fragos+, 2013)
J/ApJ/763/128 : Chandra Local Volume Survey: NGC 404 sources (Binder+, 2013)
J/ApJ/758/15 : Chandra X-ray point sources of NGC 300 (Binder+, 2012)
J/other/Sci/337.444 : RV curves of Galactic massive O stars (Sana+, 2012)
J/ApJ/749/130 : X-ray binaries in NGC 1291 with Chandra (Luo+, 2012)
J/MNRAS/419/2095 : HMXBs in nearby galaxies (Mineo+, 2012)
J/A+A/533/A33 : LMXBs detected in nearby galaxies (Zhang+, 2011)
J/ApJS/190/233 : Spectroscopy of SINGS galaxies (Moustakas+, 2010)
J/ApJS/190/1 : A survey of stellar families (Raghavan+, 2010)
J/ApJ/719/L79 : BH spin-orbit misalignment in Galactic XRBs (Fragos+, 2010)
J/MNRAS/396/1231 : Astrophotometric catalogue of NGC 891 (Rejkuba+, 2009)
J/MNRAS/360/974 : Proper motions of pulsars (Hobbs+, 2005)
J/ApJ/599/218 : Chandra LMXB in NGC 4365 and NGC 4382 (Sivakoff+, 2003)
J/ApJ/586/826 : Chandra X-ray observations of NGC 1316 (Kim+, 2003)
J/ApJ/577/738 : M31 Chandra X-ray point sources (Kong+, 2002)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [NGC]
5- 8 I4 --- NGC NGC number
10- 14 F5.2 Mpc Dist [5.2/14.1] Distance (Moustakas et al.
2010, J/ApJS/190/233)
16- 20 A5 --- Type Morphological Hubble type (de Vaucouleurs
et al. 1991, VII/155)
22 I1 --- TT [1/7] Morphological numerical type
24- 28 F5.2 [Msun/yr] logSFR [-0.7/0.7] Log of Star Formation Rate (1)
30- 33 F4.2 [Msun/yr] e_logSFR [0.1/0.3] logSFR uncertainty (1)
35- 39 F5.2 [Msun] logM* [9.3/11.2] Log of stellar mass (1)
41- 44 F4.2 [Msun] e_logM* [0.02/0.2] logM* uncertainty (1)
46- 54 F9.6 10-11/yr sSFR [0.15/17] Specific star formation rate
(SFR/M*)
56- 57 I2 --- Nsrc [16/88] Number of X-ray point sources in
XSINGS (Jenkins+, 2010HEAD...11.2905J 2010HEAD...11.2905J)
--------------------------------------------------------------------------------
Note (1): From Noll et al. (2009A&A...507.1793N 2009A&A...507.1793N)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [NGC]
5- 8 I4 --- NGC NGC number
10- 13 F4.1 [Msun] logMgal [9.5/11.3] Total stellar mass plus gas mass
from stellar mass loss
15- 19 F5.2 [Gyr] logtauo [-0.6/1] e-folding timescale for old stellar
population
21- 24 F4.1 Gyr tauo [10] Age of old stellar population
26- 30 F5.2 [Gyr] logtauy [-1.3/0] e-folding timescale for young
stellar population
32- 35 F4.2 Gyr tauy [0.05/0.2] Age of young stellar population
37- 41 F5.2 [-] logfb [-3/-1] Mass fraction of young stellar population
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [NGC]
5- 8 I4 --- NGC NGC number
10- 12 I3 --- Mod [197/277] Model number
14- 16 F3.1 --- lam*a [0.1] Common envelope efficiency times the
central concentration (λαCE)
18- 21 F4.1 --- IMF [-2.7] IMF exponent (G1)
23- 26 F4.2 --- eta [0.2/2] stellar wind strength parameter η
28- 30 A3 --- CE-HG CE event with a Hertzsprung gap? (G2)
32- 36 A5 --- q Binary mass-ratio distribution (50-50) (G3)
38- 40 F3.1 --- kappa [0/0.1] κDCBH kick distribution
multiplier (G4)
42- 43 I2 --- Rank [1/12] Rank of best-fit galaxy-model pairs
based on pair likelihood value
45- 48 I4 [-] logLK [-425/5636] Likelihood ratio (2)
--------------------------------------------------------------------------------
Note (2): Natural logarithm of ratio of each pair likelihood to maximum pair
likelihood in this table: ln(Lpair,km/Lpair,km,max).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Model [1/288] Model number
5- 7 F3.1 --- lam*a [0.1/0.5] Common envelope efficiency times
the central concentration (λαCE)
9- 13 F5.2 --- IMF [-2.7/-2.35] Exponent of high-mass power law
component of IMF (G1)
15- 18 F4.2 --- eta [0.2/2] Stellar wind strength parameter
20- 22 A3 --- CE-HG Allowed CE-HG flag (G2)
24- 28 A5 --- q Binary mass ratio distribution:
"Flat" or "50-50" (G3)
30- 32 F3.1 --- kappa [0/0.1] κDCBH kick distribution
mutiplier (G4)
34- 36 I3 --- Rank [1/192] Rank of model based on likelihood
value in this paper
38- 40 I3 --- rF13 [1/192] Rank of model based on likelihood
value in Fragos et al. 2013, J/ApJ/764/41
42- 44 I3 --- rT13 [1/192] Rank of model based on likelihood
value in Tremmel et al. 2013, J/ApJ/766/19
46- 54 I9 [-] logLK [-30317/0] Natural logarithm of ratio of
each global likelihood to maximum global
likelihood in this table
--------------------------------------------------------------------------------
Global notes:
Note (G1): Exponent of high-mass power-law component of IMF:
Kroupa (2001MNRAS.322..231K 2001MNRAS.322..231K; -2.35) or Kroupa & Weidner
(2003ApJ...598.1076K 2003ApJ...598.1076K; -2.7)
Note (G2): Common Envelope (CE) event flag:
Yes = all possible outcomes of a CE event with a Hertzsprung gap donor allowed
No = a CE with such a donor star will always result in a merger.
Note (G3): "50-50" means half of the binaries originate in a twin binary
distribution and half in a flat mass-ratio distribution.
Note (G4): Parameter with which the Hobbs et al. (2005, J/MNRAS/360/974) kick
distribution is multiplied for BHs formed through an SN explosion
with negligible ejected mass.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 05-Mar-2015