J/ApJ/774/136  X-ray obs. of SINGS gal. compared to models  (Tzanavaris+, 2013)

Modeling X-ray binary evolution in normal galaxies: insights from SINGS. Tzanavaris P., Fragos T., Tremmel M., Jenkins L., Zezas A., Lehmer B.D., Hornschemeier A., Kalogera V., Ptak A., Basu-Zych A.R. <Astrophys. J., 774, 136 (2013)> =2013ApJ...774..136T 2013ApJ...774..136T
ADC_Keywords: Binaries, X-ray ; Models ; Galaxies, nearby Keywords: binaries: close; galaxies: spiral; stars: evolution; X-rays: binaries Abstract: We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey. For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of the oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or that XRB modeling requires calibration on larger observational samples. Given these limitations, we find that the best models are consistent with a product of common envelope ejection efficiency and central donor concentration ≃0.1, and a 50% uniform-50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor, and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the LX-star formation rate and LX-stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution of both XRBs over cosmic time and of the galaxy X-ray luminosity with redshift. Description: We use galaxies selected from SINGS (Kennicutt et al. 2003PASP..115..928K 2003PASP..115..928K). As part of a large Chandra program (XSINGS; Jenkins et al. 2010HEAD...11.2905J 2010HEAD...11.2905J), the Advanced CCD Imaging Spectrometer was used to extend the survey's wavelength coverage to the X-ray regime. Details regarding the sample selection, X-ray observations, source detection, and characterization will be presented in a forthcoming publication (A. Zezas et al. 2014, in preparation). We use a subsample of 12 SINGS galaxies that have SFHs from SED fitting with the code CIGALE (Noll et al. 2009A&A...507.1793N 2009A&A...507.1793N); see Figure 1. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 57 12 SINGS galaxy subsample used in this work table3.dat 41 12 Star formation histories from SED fitting table4.dat 48 12 Parameters for highest pair likelihood model-galaxy pairs table5.dat 54 192 Parameters and global likelihood values for 15 best models ranked by likelihood -------------------------------------------------------------------------------- See also: B/chandra : The Chandra Archive Log (CXC, 1999-2014) J/ApJ/766/19 : XRB pop. synthesis models in 0<z<20 gal. (Tremmel+, 2013) J/ApJS/204/14 : Deep Chandra observations of NGC 4649. I. (Luo+, 2013) J/ApJ/764/41 : X-ray binary evolution across cosmic time (Fragos+, 2013) J/ApJ/763/128 : Chandra Local Volume Survey: NGC 404 sources (Binder+, 2013) J/ApJ/758/15 : Chandra X-ray point sources of NGC 300 (Binder+, 2012) J/other/Sci/337.444 : RV curves of Galactic massive O stars (Sana+, 2012) J/ApJ/749/130 : X-ray binaries in NGC 1291 with Chandra (Luo+, 2012) J/MNRAS/419/2095 : HMXBs in nearby galaxies (Mineo+, 2012) J/A+A/533/A33 : LMXBs detected in nearby galaxies (Zhang+, 2011) J/ApJS/190/233 : Spectroscopy of SINGS galaxies (Moustakas+, 2010) J/ApJS/190/1 : A survey of stellar families (Raghavan+, 2010) J/ApJ/719/L79 : BH spin-orbit misalignment in Galactic XRBs (Fragos+, 2010) J/MNRAS/396/1231 : Astrophotometric catalogue of NGC 891 (Rejkuba+, 2009) J/MNRAS/360/974 : Proper motions of pulsars (Hobbs+, 2005) J/ApJ/599/218 : Chandra LMXB in NGC 4365 and NGC 4382 (Sivakoff+, 2003) J/ApJ/586/826 : Chandra X-ray observations of NGC 1316 (Kim+, 2003) J/ApJ/577/738 : M31 Chandra X-ray point sources (Kong+, 2002) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [NGC] 5- 8 I4 --- NGC NGC number 10- 14 F5.2 Mpc Dist [5.2/14.1] Distance (Moustakas et al. 2010, J/ApJS/190/233) 16- 20 A5 --- Type Morphological Hubble type (de Vaucouleurs et al. 1991, VII/155) 22 I1 --- TT [1/7] Morphological numerical type 24- 28 F5.2 [Msun/yr] logSFR [-0.7/0.7] Log of Star Formation Rate (1) 30- 33 F4.2 [Msun/yr] e_logSFR [0.1/0.3] logSFR uncertainty (1) 35- 39 F5.2 [Msun] logM* [9.3/11.2] Log of stellar mass (1) 41- 44 F4.2 [Msun] e_logM* [0.02/0.2] logM* uncertainty (1) 46- 54 F9.6 10-11/yr sSFR [0.15/17] Specific star formation rate (SFR/M*) 56- 57 I2 --- Nsrc [16/88] Number of X-ray point sources in XSINGS (Jenkins+, 2010HEAD...11.2905J 2010HEAD...11.2905J) -------------------------------------------------------------------------------- Note (1): From Noll et al. (2009A&A...507.1793N 2009A&A...507.1793N) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [NGC] 5- 8 I4 --- NGC NGC number 10- 13 F4.1 [Msun] logMgal [9.5/11.3] Total stellar mass plus gas mass from stellar mass loss 15- 19 F5.2 [Gyr] logtauo [-0.6/1] e-folding timescale for old stellar population 21- 24 F4.1 Gyr tauo [10] Age of old stellar population 26- 30 F5.2 [Gyr] logtauy [-1.3/0] e-folding timescale for young stellar population 32- 35 F4.2 Gyr tauy [0.05/0.2] Age of young stellar population 37- 41 F5.2 [-] logfb [-3/-1] Mass fraction of young stellar population -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [NGC] 5- 8 I4 --- NGC NGC number 10- 12 I3 --- Mod [197/277] Model number 14- 16 F3.1 --- lam*a [0.1] Common envelope efficiency times the central concentration (λαCE) 18- 21 F4.1 --- IMF [-2.7] IMF exponent (G1) 23- 26 F4.2 --- eta [0.2/2] stellar wind strength parameter η 28- 30 A3 --- CE-HG CE event with a Hertzsprung gap? (G2) 32- 36 A5 --- q Binary mass-ratio distribution (50-50) (G3) 38- 40 F3.1 --- kappa [0/0.1] κDCBH kick distribution multiplier (G4) 42- 43 I2 --- Rank [1/12] Rank of best-fit galaxy-model pairs based on pair likelihood value 45- 48 I4 [-] logLK [-425/5636] Likelihood ratio (2) -------------------------------------------------------------------------------- Note (2): Natural logarithm of ratio of each pair likelihood to maximum pair likelihood in this table: ln(Lpair,km/Lpair,km,max). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Model [1/288] Model number 5- 7 F3.1 --- lam*a [0.1/0.5] Common envelope efficiency times the central concentration (λαCE) 9- 13 F5.2 --- IMF [-2.7/-2.35] Exponent of high-mass power law component of IMF (G1) 15- 18 F4.2 --- eta [0.2/2] Stellar wind strength parameter 20- 22 A3 --- CE-HG Allowed CE-HG flag (G2) 24- 28 A5 --- q Binary mass ratio distribution: "Flat" or "50-50" (G3) 30- 32 F3.1 --- kappa [0/0.1] κDCBH kick distribution mutiplier (G4) 34- 36 I3 --- Rank [1/192] Rank of model based on likelihood value in this paper 38- 40 I3 --- rF13 [1/192] Rank of model based on likelihood value in Fragos et al. 2013, J/ApJ/764/41 42- 44 I3 --- rT13 [1/192] Rank of model based on likelihood value in Tremmel et al. 2013, J/ApJ/766/19 46- 54 I9 [-] logLK [-30317/0] Natural logarithm of ratio of each global likelihood to maximum global likelihood in this table -------------------------------------------------------------------------------- Global notes: Note (G1): Exponent of high-mass power-law component of IMF: Kroupa (2001MNRAS.322..231K 2001MNRAS.322..231K; -2.35) or Kroupa & Weidner (2003ApJ...598.1076K 2003ApJ...598.1076K; -2.7) Note (G2): Common Envelope (CE) event flag: Yes = all possible outcomes of a CE event with a Hertzsprung gap donor allowed No = a CE with such a donor star will always result in a merger. Note (G3): "50-50" means half of the binaries originate in a twin binary distribution and half in a flat mass-ratio distribution. Note (G4): Parameter with which the Hobbs et al. (2005, J/MNRAS/360/974) kick distribution is multiplied for BHs formed through an SN explosion with negligible ejected mass. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 05-Mar-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line