J/ApJ/774/75 Solar isotopic decomposition for nucleosynthesis (West+, 2013)
Metallicity-dependent Galactic isotopic decomposition for nucleosynthesis.
West C., Heger A.
<Astrophys. J., 774, 75 (2013)>
=2013ApJ...774...75W 2013ApJ...774...75W
ADC_Keywords: Models ; Abundances ; Supernovae
Keywords: Galaxy: abundances; Galaxy: evolution; supernovae: general;
nuclear reactions, nucleosynthesis, abundances; stars: abundances
Abstract:
All stellar evolution models for nucleosynthesis require an initial
isotopic abundance set to use as a starting point. Generally, our
knowledge of isotopic abundances of stars is fairly incomplete except
for the Sun. We present a first model for a complete average isotopic
decomposition as a function of metallicity. Our model is based on the
underlying nuclear astrophysics processes, and is fitted to
observational data, rather than traditional forward galactic chemical
evolution modeling which integrates stellar yields beginning from big
bang nucleosynthesis. We first decompose the isotopic solar abundance
pattern into contributions from astrophysical sources. Each
contribution is then assumed to scale as a function of metallicity.
The resulting total isotopic abundances are summed into elemental
abundances and fitted to available halo and disk stellar data to
constrain the model's free parameter values. This procedure allows us
to use available elemental observational data to reconstruct and
constrain both the much needed complete isotopic evolution that is not
accessible to current observations, and the underlying astrophysical
processes. As an example, our model finds a best fit for Type Ia
contributing ≃0.7 to the solar Fe abundance, and Type Ia onset
occurring at [Fe/H]≃-1.1, in agreement with typical values.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 106 287 Solar abundance decomposition
--------------------------------------------------------------------------------
See also:
J/A+A/566/A146 : Pair-instability supernovae models (Kozyreva+, 2014)
J/ApJ/769/99 : Nucleosynthetic yields for stars >12M☉ (Brown+, 2013)
J/ApJS/199/38 : Presupernova evolution (Limongi+, 2012)
J/MNRAS/404/1529 : s-process in low-metallicity stars (Bisterzo+, 2010)
J/MNRAS/403/1413 : Updated stellar yields from AGB models (Karakas, 2010)
J/ApJ/724/341 : Nucleosynthesis of massive metal-free stars (Heger+, 2010)
J/ApJ/696/797 : Evolution & yields of low-mass AGB stars (Cristallo+, 2009)
J/A+A/490/769 : Yields from extremely metal-poor stars (Campbell+, 2008)
J/A+A/438/139 : Abundances in Milky Way's disk (Soubiran+, 2005)
http://www.kadonis.org/ : Karlsruhe Astrophysical Database of Nucleosynthesis
In Stars
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 A2 --- El Element name
3- 5 I3 --- A [1/238] Isotope number
7- 16 E10.5 --- Solar [0/1] Solar abundance (1)
18- 25 E8.3 --- s-main [0/1]? Main s-process abundance yield (2)
27- 34 E8.3 --- s-weak [0/1]? Weak s-process abundance yield (2)
36- 43 E8.3 --- r [0/1]? r-process abundance yield (2)
45- 52 E8.3 --- nu-p [0/1]? νp-process abundance yield (2)
54- 61 E8.3 --- gamma [0/1]? γ-process abundance yield (2)
63- 70 E8.3 --- Ia [0/1]? Type Ia SNe abundance yield (2)
72- 79 E8.3 --- Massive [0/1]? Massive star abundance yield (2)
81- 88 E8.3 --- GCR [0/0.3]? Secondary Galactic Cosmic Ray
spallation abundance yield (2)
90- 97 E8.3 --- nu-N-GCR [0.5/0.8]? ν-process, novae, and secondary
cosmic ray spallation abundance yield (2)
99-106 E8.3 --- BBN [0.19/1.6]? Big Bang Nucleosynthesis
abundance yield (2)
--------------------------------------------------------------------------------
Note (1): Solar abundance from Lodders et al. (2009LanB...4B...44L 2009LanB...4B...44L) and are
in units of mole fractions.
Note (2): The fraction of the solar abundance attributed to the process.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 02-Mar-2015