J/ApJ/776/67 Rotational tracks (van Saders+, 2013)
Fast star, slow star: old star, young star: subgiant rotation as a population
and stellar physics diagnostic.
van Saders J.L., Pinsonneault M.H.
<Astrophys. J., 776, 67 (2013)>
=2013ApJ...776...67V 2013ApJ...776...67V
ADC_Keywords: Clusters, open ; Rotational velocities ; Effective temperatures ;
Stars, masses ; Models
Keywords: stars: evolution; stars: fundamental parameters; stars: interiors;
stars: rotation
Abstract:
Stellar rotation is a strong function of both mass and evolutionary
state. Missions such as Kepler and CoRoT provide tens of thousands of
rotation periods, drawn from stellar populations that contain objects
at a range of masses, ages, and evolutionary states. Given a set of
reasonable starting conditions and a prescription for angular momentum
loss, we address the expected range of rotation periods for cool field
stellar populations (∼0.4-2.0M☉). We find that cool stars fall
into three distinct regimes in rotation. Rapid rotators with surface
periods less than 10 days are either young low-mass main sequence (MS)
stars, or higher mass subgiants which leave the MS with high rotation
rates. Intermediate rotators (10-40 days) can be either cool MS
dwarfs, suitable for gyrochronology, or crossing subgiants at a range
of masses. Gyrochronology relations must therefore be applied
cautiously, since there is an abundant population of subgiant
contaminants. The slowest rotators, at periods greater than 40 days,
are lower mass subgiants undergoing envelope expansion. We identify
additional diagnostic uses of rotation periods. There exists a
period-age relation for subgiants distinct from the MS period-age
relations. There is also a period-radius relation that can be used as
a constraint on the stellar radius, particularly in the interesting
case of planet host stars. The high-mass/low-mass break in the
rotation distribution on the MS persists onto the subgiant branch, and
has potential as a diagnostic of stellar mass. Finally, this set of
theoretical predictions can be compared to extensive datasets to
motivate improved modeling.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 29 375 M37 (NGC 2099) rotation data
table2.dat 37 133 Hyades & Praesepe rotation data
table3.dat 71 1690 Rotational tracks at fixed Teff, [Fe/H]=-0.2,
main sequence (MS) only
table4.dat 71 4097 Rotational tracks at fixed Teff, [Fe/H]=-0.2,
subgiant branch (SGB) only
table5.dat 71 1878 Rotational tracks at fixed Teff, [Fe/H]=0.0,
main sequence (MS) only
table6.dat 71 4152 Rotational tracks at fixed Teff, [Fe/H]=0.0,
subgiant branch (SGB) only
--------------------------------------------------------------------------------
See also:
J/MNRAS/442/2081 : Praesepe members light curves (Kovacs+, 2014)
J/A+A/560/A4 : Rotation periods of active Kepler stars (Reinhold+, 2013)
J/A+A/557/L10 : Rotation periods of 12000 Kepler stars (Nielsen+, 2013)
J/MNRAS/436/1883 : Properties of KOI host stars (Walkowicz+, 2013)
J/MNRAS/432/1203 : Rotation periods of M-dwarf stars (McQuillan+, 2013)
J/MNRAS/430/1433 : NGC 2264 members periods with CoRoT (Affer+, 2013)
J/MNRAS/424/11 : Rotation of field stars from CoRoT data (Affer+, 2012)
J/ApJS/199/30 : Temperature scale for KIC stars (Pinsonneault+, 2012)
J/ApJ/746/16 : Modelling the convection zone (van Saders+, 2012)
J/A+A/537/A120 : Rotational velocities of A-type stars. IV. (Zorec+, 2012)
J/MNRAS/413/2218 : Stellar rotation in Hyades and Praesepe (Delorme+, 2011)
J/AJ/142/112 : KIC photometric calibration (Brown+, 2011)
J/ApJ/733/115 : Rotation periods and membership in M34 (Meibom+, 2011)
J/A+A/523/A91 : CoRoT/Exoplanet fields with MATISSE (Gazzano+, 2010)
J/MNRAS/408/475 : HATNet Pleiades Rotation Period Catalogue (Hartman+, 2010)
J/ApJ/695/679 : Stellar rotation in M35 (Meibom+, 2009)
J/ApJ/691/342 : griBVI photometry in M37 (Hartman+, 2009)
J/ApJ/687/1264 : Age estimation for solar-type dwarfs (Mamajek+, 2008)
J/ApJ/675/1233 : gri photometry in M37 (NGC 2099) (Hartman+, 2008)
J/A+A/483/253 : BV photometry of NGC 2099 variables (Messina+, 2008)
J/A+A/409/251 : Li abundances & velocities in F and G stars (Mallik+, 2003)
J/A+A/397/147 : Activity-rotation relationship in stars (Pizzolato+ 2003)
J/A+A/331/81 : Hyades membership (Perryman+ 1998)
J/MNRAS/298/525 : Stellar evolution models for Z=0.0001 to 0.03 (Pols+ 1998)
J/PASP/109/759 : Rotational Vel. of Intermediate-mass MS Stars (Wolff+ 1998)
J/ApJS/99/135 : A-type stars rotation and spectral peculiarities (Abt+ 1995)
J/PASP/96/707 : Hyades lower main sequence (Duncan+, 1984)
http://www.univie.ac.at/webda/ : WEBDA database home page
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Seq [2/572] Star designation (1)
5- 10 F6.3 mag Vmag [15.7/22.9] V band magnitude
12- 16 F5.3 mag B-V [0.7/2] The (B-V) color index
18- 22 F5.3 Msun Mass [0.3/1.3] Mass (2)
24- 29 F6.3 d Per [0.4/19.7] Rotation period (3)
--------------------------------------------------------------------------------
Note (1): In the original Hartman et al. (2009, J/ApJ/691/342) tables.
Note that the Seq number here is the recno of the Catalog
J/ApJ/691/342 in VizieR and not the Identification number
(column ID in the same catalog).
Note (2): Mass inferred from the combination of V and B-V using the
An et al. (2007ApJ...655..233A 2007ApJ...655..233A) isochrones assuming the cluster
parameters: t=550Myr, [Fe/H]=0.045, E(B-V)=0.227, and
distance modulus µ=11.57
Note (3): From the AoV algorithm (Analysis of Variance) in Hartman et al.
(2009, J/ApJ/691/342) with N=2.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- Seq WEBDA designation
(1-187 for Hyades, 38-1133 for Praesepe) (1)
6- 10 F5.3 mag B-V [0.1/0.8] The (B-V) color index (2)
12- 16 F5.3 Msun Mass [1/2.4] Mass (3)
18- 22 F5.3 Rsun Rad [0.9/3.1] Radius (3)
24- 28 F5.1 km/s vsini [1/245] Rotational velocity (2)
30- 35 F6.3 d Per [0.3/60.4] Rotation period (4)
37 I1 --- Cl [1/2] Cluster source (1=Hyades or 2=Praesepe)
--------------------------------------------------------------------------------
Note (1): Lists are:
* for Hyades stars: van Bueren H.G. 1952BAN....11..385V 1952BAN....11..385V
<Cl Melotte 25 NNN> in Simbad.
* for Praesepe stars:
#1133 in Praesepe = HD 72779 (= Vanderlinen 133).
Other numbers very probably from Klein-Wassink (1927PGro...41....1K 1927PGro...41....1K)
<Cl* NGC 2632 KW NNN> in Simbad.
Note (2): Averages over values available in Mermilliod (1995, II/124).
Note (3): Mass and radius inferred using B-V and the An et al.
(2007ApJ...655..233A 2007ApJ...655..233A) isochrones assuming the cluster parameters:
t=550(550)Myr, [Fe/H]=0.13(0.11), E(B-V)=0.003(0.007) for the
Hyades(Praesepe).
Note (4): Under that assumption that sin(i)=1, and using the inferred
stellar radius.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table[3456].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 K Teff [5000/7000] Effective temperature, step of 50K
6- 10 F5.3 [cm/s2] log(g) [3.5/4.7] Log of the surface gravity, step 0.005
12- 17 F6.4 Msun Mass [0.7/2] Mass
19- 25 F7.4 [Lsun] logL [-0.6/1.6] Log of the luminosity
27- 31 I5 K TeffZ [4865/10007] zero-age main sequence (ZAMS)
derived effective temperature
33- 40 F8.4 d Pfast [0.2/265] Fast launch model predicted
rotation period
42- 49 F8.4 d Pslow [2.4/267] Slow launch model predicted
rotation period
51- 60 E10.4 g.cm2 Itot Moment of inertia
62- 71 E10.4 s tau Convective overturn timescale τc
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 19-Mar-2015