J/ApJ/782/45 SEAMBHs. I. Mrk 142, Mrk 335, and IRAS F12397+3333 (Du+, 2014)
Supermassive black holes with high accretion rates in active galactic nuclei.
I. First results from a new reverberation mapping campaign.
Du P., Hu C., Lu K.-X., Wang F., Qiu J., Li Y.-R., Bai J.-M., Kaspi S.,
Netzer H., Wang J.-M., (the Seambh collaboration)
<Astrophys. J., 782, 45 (2014)>
=2014ApJ...782...45D 2014ApJ...782...45D (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; Galaxies, Seyfert ; Accretion ; Spectroscopy
Keywords: accretion, accretion disks - black hole physics - galaxies: active
Abstract:
We report first results from a large project to measure black hole
(BH) mass in high accretion rate active galactic nuclei (AGNs). Such
objects may be different from other AGNs in being powered by slim
accretion disks and showing saturated accretion luminosities, but both
are not yet fully understood. The results are part of a large
reverberation mapping (RM) campaign using the 2.4m Shangri-La
telescope at the Yunnan Observatory in China. The goals are to
investigate the gas distribution near the BH and the properties of the
central accretion disks, to measure BH mass and Eddington ratios, and
to test the feasibility of using such objects as a new type of
cosmological candles. The paper presents results for three objects,
Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags
relative to the 5100Å continuum of 10.6-2.9+1.7,
6.4-2.2+0.8 and 11.4-1.9+2.9 days, respectively. The
corresponding BH masses are (8.3-3.2+2.6)x106M☉,
(3.4-1.2+0.5)x106M☉, and (7.5-4.1+4.3x106M☉,
and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for
the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333
(extinction corrected) clearly deviate from the currently known
relation between Hβ lag and continuum luminosity. The three
Eddington ratios are beyond the values expected in thin accretion
disks and two of them are the largest measured so far among objects
with RM-based BH masses. We briefly discuss implications for slim
disks, BH growth, and cosmology.
Description:
All the spectroscopy and imaging observations reported here were
obtained with the Shangri-La telescope (SLT: IAU site code O44) at the
Lijiang Station of the Yunnan Observatory of the Chinese Academy of
Sciences. The SLT started its operation in 2008. This is a 2.4m
alt-azimuth mounted Ritchey-Chretien telescope. The rms pointing error
is about 2arcsec rms, and the tracking accuracy with autoguiding is
better than 0.5''/hr. The longitude of the station is
100°01'51''E, the latitude 26°42'32''N, and the altitude
3193m. The annually averaged seeing is ∼1.5'' in terms of the FWHM of
stars (measured with Yunnan Faint Object Spectrograph and Camera,
YFOSC), ranging from 0.7'' to 2.0''.
The YFOSC, built in 2010 by the astronomical instrumentation team at
the Niels Bohr Institute, is similar to the ESO Faint Object
Spectrograph and Camera, but with an additional focal reducer. It
started its operation in 2011. YFOSC is a versatile instrument for low
resolution spectroscopy and imaging, working at the Cassegrain focus.
The CCD chip is an e2v CCD42-90 Back Illuminated Deep Depletion
2048*4608 pixel Scientific CCD Sensor whose pixel size is 13.5mm,
pixel scale 0.283''/pixel, covering a 10'*10' field of view (FOV).
Our Reverberation Mapping (RM) campaign started in 2012 October. All
the spectra were obtained using YFOSC with Grism 14 which provides a
resolution of 92Å/mm (1.8Å/pixel) and covers the wavelength
range of 3800-7200Å.
In this first paper of the series we report the observations of three
objects: Mrk 142, Mrk 335, and IRAS F12397+3333.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 108 3 Basic data and variability amplitude
table2.dat 49 261 Continuum and Hβ light curves
figure5.dat 49 10571 Mean and rms spectra (observed flux vs.
rest-frame wavelength)
--------------------------------------------------------------------------------
See also:
J/ApJ/806/22 : SEAMBHs IV. Hβ time lags (Du+, 2015)
J/ApJ/713/L11 : X-ray properties of Seyfert 1 galaxies (Zhou+, 2010)
J/A+A/437/87 : Mrk 335 photometry in 1995-2004 (Doroshenko+, 2005)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Name Object name
18- 19 I2 h RAh Hour of Right Ascension (J2000)
21- 22 I2 min RAm Minute of Right Ascension (J2000)
24- 27 F4.1 s RAs Second of Right Ascension (J2000)
29 A1 --- DE- Sign of the Declination (J2000)
30- 31 I2 deg DEd Degree of Declination (J2000)
33- 34 I2 arcmin DEm Arcminute of Declination (J2000)
36- 37 I2 arcsec DEs Arcsecond of Declination (J2000)
39- 44 F6.4 --- z [0.025/0.05] Redshift
46- 50 F5.3 mag E(B-V) [0.015/0.03] Galactic extinction (1)
52- 55 I4 yr Yr0 Starting monitoring period year
57- 59 A3 --- Mth0 Starting monitoring period month
60 A1 --- --- [-]
61- 64 I4 yr Yr1 Ending monitoring period year
66- 68 A3 --- Mth1 Ending monitoring period month
70- 72 I3 --- Nspec [51/119] Number of spectroscopic observing
epochs
74- 76 F3.1 % Amp1 [5.2/8.1] Variability amplitude of the
F5100Å light curve (Fvar(5100Å)) (2)
78- 80 F3.1 % e_Amp1 [0.5/0.6] Error in Amp1 (3)
82- 84 F3.1 % Amp2 [3.2/5.5] Variability amplitude of the V-band
light curve (Fvar(V)) (2)
86- 88 F3.1 % e_Amp2 [0.3/0.4] Error in Amp2 (3)
90- 92 F3.1 % Amp3 [3/8] Variability amplitude of the FHβ
light curve (Fvar(Hβ)) (2)
94- 96 F3.1 % e_Amp3 [0.3/0.6] Error in Amp3 (3)
98-102 F5.1 arcsec Sep [80.7/189] Angular distance between the object
and the comparison star (R*)
104-108 F5.1 deg PA [74/155.2] Position angle of the comparison star
--------------------------------------------------------------------------------
Note (1): Using the maps in Schlafly & Finkbeiner (2011ApJ...737..103S 2011ApJ...737..103S).
Note (2): Amplitudes were calculated using Equation (4).
Note (3): Calculated according to Edelson et al. (2002ApJ...568..610E 2002ApJ...568..610E).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Name Object name (Mrk 335, Mrk 142, or
IRAS F12397+3333)
18- 25 F8.4 d JD [22.1/262.2]? Julian Date of observation
(JD-2456200)
27- 31 F5.3 10aW/m2/nm Flux [1.2/6.9]? Continuum flux at
(1+z)5100Å (G1)
33- 37 F5.3 10aW/m2/nm e_Flux [0.005/0.4]? Error in Flux (1)
39- 43 F5.3 0.1fW/m2 FHb [0.6/6.5]? Integrated Hβ flux (2)
45- 49 F5.3 0.1fW/m2 e_FHb [0.005/0.06]? Error in FHb (1)
--------------------------------------------------------------------------------
Note (1): The systematic uncertainties of Flux and Fhb are
(ΔFlux,ΔFHb)=(0.138,0.091),(0.045,0.018) and (0.035,0.018) for
Mrk 335, Mrk 142 and IRAS F12397 respectively.
Note (2): In units of 10-13erg/s/cm2.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: figure5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Name Object name (Mrk 335, Mrk 142, or
IRAS F12397+3333)
18- 27 F10.5 0.1nm lambda [3760/7288] Rest frame wavelength λ
(in Å)
29- 38 E10.5 10aW/m2/nm <Flux> Mean observed flux (G1)
40- 49 E10.5 10aW/m2/nm rms RMS flux (G1)
--------------------------------------------------------------------------------
Global Notes:
Note (G1): In units of 10-15erg/s/cm2/Å.
History:
From electronic version of the journal
References:
Wang et al. Paper II. 2014ApJ...793..108W 2014ApJ...793..108W Cat. J/ApJ/793/108
Hu et al. Paper III. 2015ApJ...804..138H 2015ApJ...804..138H
Du et al. Paper IV. 2015ApJ...806...22D 2015ApJ...806...22D Cat. J/ApJ/806/22
Du et al. Paper V. 2016ApJ...825..126D 2016ApJ...825..126D Cat. J/ApJ/825/126
Du et al. Paper VI. 2016ApJ...820...27D 2016ApJ...820...27D
Xiao et al. Paper VII. 2018ApJ...864..109X 2018ApJ...864..109X
Li et al. Paper VIII. 2018ApJ...869..137L 2018ApJ...869..137L
Du et al. Paper IX. 2018ApJ...856....6D 2018ApJ...856....6D Cat. J/ApJ/856/6
Lu et al. Paper X. 2019ApJ...877...23L 2019ApJ...877...23L Cat. J/ApJ/877/23
Cackett et al. Paper XI. 2020ApJ...896....1C 2020ApJ...896....1C Cat. J/ApJ/896/1
Hu et al. Paper XII. 2021ApJS..253...20H 2021ApJS..253...20H Cat. J/ApJS/253/20
(End) Prepared by [AAS]; Sylvain Guehenneux [CDS] 10-Mar-2016