J/ApJ/799/208 Type IIP supernovae from Pan-STARRS1 (Sanders+, 2015)
Toward characterization of the Type IIP supernova progenitor population:
a statistical sample of light curves from Pan-STARRS1.
Sanders N.E., Soderberg A.M., Gezari S., Betancourt M., Chornock R.,
Berger E., Foley R.J., Challis P., Drout M., Kirshner R.P., Lunnan R.,
Marion G.H., Margutti R., McKinnon R., Milisavljevic D., Narayan G.,
Rest A., Kankare E., Mattila S., Smartt S.J., Huber M.E., Burgett W.S.,
Draper P.W., Hodapp K.W., Kaiser N., Kudritzki R.P., Magnier E.A.,
Metcalfe N., Morgan J.S., Price P.A., Tonry J.L., Wainscoat R.J., Waters C.
<Astrophys. J., 799, 208 (2015)>
=2015ApJ...799..208S 2015ApJ...799..208S (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae; Photometry, ugriz; Surveys; Redshifts; Spectroscopy
Keywords: supernovae: general; surveys
Abstract:
In recent years, wide-field sky surveys providing deep multiband
imaging have presented a new path for indirectly characterizing the
progenitor populations of core-collapse supernovae (SNe): systematic
light-curve studies. We assemble a set of 76 grizy-band Type IIP SN
light curves from Pan-STARRS1, obtained over a constant survey program
of 4yr and classified using both spectroscopy and
machine-learning-based photometric techniques. We develop and apply a
new Bayesian model for the full multiband evolution of each light
curve in the sample. We find no evidence of a subpopulation of
fast-declining explosions (historically referred to as "Type IIL"
SNe). However, we identify a highly significant relation between the
plateau phase decay rate and peak luminosity among our SNe IIP. These
results argue in favor of a single parameter, likely determined by
initial stellar mass, predominantly controlling the explosions of red
supergiants. This relation could also be applied for SN cosmology,
offering a standardizable candle good to an intrinsic scatter of
≲0.2mag. We compare each light curve to physical models from
hydrodynamic simulations to estimate progenitor initial masses and
other properties of the Pan-STARRS1 Type IIP SN sample. We show that
correction of systematic discrepancies between modeled and observed
SN IIP light-curve properties and an expanded grid of progenitor
properties are needed to enable robust progenitor inferences from
multiband light-curve samples of this kind. This work will serve as a
pathfinder for photometric studies of core-collapse SNe to be
conducted through future wide-field transient searches.
Description:
We select an SN II light-curve sample from the transients discovered
and monitored by Pan-STARRS1 (PS1) since the initiation of the survey
in 2010, consisting of 18953 relevant photometric data points, 5096 of
which are robust transient detections. The PS1 observations are
obtained through a set of five broadband filters, which we refer to
interchangeably as gP1, rP1, iP1, zP1, and yP1 or simply
grizy (Stubbs et al. 2010ApJS..191..376S 2010ApJS..191..376S).
We begin with a selection of PS1-discovered SNe that were classified
as Type II through our spectroscopic follow-up campaign: 112 objects
in total. Spectra were obtained using the Blue Channel and Hectospec
spectrographs of the 6.5m MMT telescope, the Low Dispersion Survey
Spectrograph (LDSS3) and Inamori-Magellan Areal Camera and
Spectrograph (IMACS) of the 6.5m Magellan telescopes, the Gemini
Multi-Object Spectrograph of the 8m Gemini telescopes (GMOS), and the
Andalucia Faint Object Spectrograph and Camera (ALFOSC) at the 2.6m
Nordic Optical Telescope. Details of our final SN IIP sample, as
described in Section 3.4, are listed in Table 1.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 65 77 Pan-STARRS1 type IIP SN sample
table2.dat 172 375 *Pan-STARRS1 type IIP SN light curve parameters
table3.dat 79 43 SN IIP grizy template light curves
table5.dat 139 67 Light curve and modeled progenitor parameters
for PS1 SNe IIP
--------------------------------------------------------------------------------
Note on table2.dat: Light-curve parameters are listed separately for each
photometric band, in sequence. The parameters are defined in Section 3.1.
--------------------------------------------------------------------------------
See also:
J/A+A/574/A60 : Light curve templates of SNe Ib/c from SDSS (Taddia+, 2015)
J/MNRAS/442/844 : Type II-P supernovae BVRI light curves (Faran+, 2014)
J/MNRAS/433/1871 : UBVRI griz light curves of SN 2012aw (Bose+, 2013)
J/ApJ/775/125 : Metallicity of galaxies from colors (Sanders+, 2013)
J/A+A/558/A131 : Model spectra of hot stars at the pre-SN stage (Groh+, 2013)
J/A+A/558/A103 : Stellar models with rotation, Z=0.002 (Georgy+, 2013)
J/A+A/555/A142 : Spectra of 5 Type II supernovae (Inserra+, 2013)
J/ApJ/750/99 : The Pan-STARRS1 photometric system (Tonry+, 2012)
J/A+A/537/A146 : Stellar models with rotation, Z=0.014 (Ekstrom+, 2012)
J/ApJ/742/89 : Relations between spectra & colors of SNe Ia (Foley+, 2011)
J/ApJ/741/97 : Light curves of Ibc supernovae (Drout+, 2011)
J/MNRAS/412/1441 : SNe luminosity functions (Li+, 2011)
J/MNRAS/408/827 : Simulations of supernova explosions (Dessart+, 2010)
J/ApJ/708/661 : SDSS-II SN Survey: SNe II-P standardization (D'Andrea+, 2010)
J/ApJ/699/L139 : Spectral parameters of SNe Ia (Wang+, 2009)
J/ApJ/666/674 : ESSENCE supernova survey (Miknaitis+, 2007)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [PS1]
4- 9 A6 --- PS1 PS1 transient designation (-YYaaa) (G1) (1)
11- 12 I2 --- Field [1/10] PS1 Medium Deep Field where
transient discovered
14- 15 I2 h RAh Hour of Right Ascension (J2000)
17- 18 I2 min RAm Minute of Right Ascension (J2000)
20- 25 F6.3 s RAs Second of Right Ascension (J2000)
27 A1 --- DE- Sign of the Declination (J2000)
28- 29 I2 deg DEd Degree of Declination (J2000)
31- 32 I2 arcmin DEm Arcminute of Declination (J2000)
34- 38 F5.2 arcsec DEs Arcsecond of Declination (J2000)
40- 44 I5 d MJD Modified Julian Date of discovery
46- 50 F5.3 --- z [0.04/0.4] Redshift from follow-up spectroscopy
52- 53 I2 --- Ng [0/30] Number of PS1 g band observations
55- 56 I2 --- Nr [1/36] Number of PS1 r band observations
58- 59 I2 --- Ni [0/37] Number of PS1 i band observations
61- 62 I2 --- Nz [0/30] Number of PS1 z band observations
64- 65 I2 --- Ny [0/27] Number of PS1 y band observations
--------------------------------------------------------------------------------
Note (1): PS1-12bml has been added by CDS to match the list of objects
in table 2 (data taken in ArXiV:1404.2004v2).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- Band PS1 filter used (g, i, r, y or z)
2- 6 A5 --- --- [-band]
8- 10 A3 --- --- [PS1]
11- 16 A6 --- PS1 PS1 transient designation (G1)
18- 24 F7.1 d t0 Modified Julian Date of the epoch of explosion
26- 29 F4.1 d E_t0 Upper limit uncertainty in t0
31- 34 F4.1 d e_t0 Lower limit uncertainty in t0
36- 39 F4.1 [-] logalpha Log α parameter
41- 43 F3.1 [-] E_logalpha Upper limit uncertainty in logalpha
45- 47 F3.1 [-] e_logalpha Lower limit uncertainty in logalpha
49- 52 F4.1 [-] logbeta1 Log β1 parameter
54- 56 F3.1 [-] E_logbeta1 Upper limit uncertainty in logbeta1
58- 60 F3.1 [-] e_logbeta1 Lower limit uncertainty in logbeta1
62- 65 F4.1 [-] logbeta2 Log β2 parameter
67- 69 F3.1 [-] E_logbeta2 Upper limit uncertainty in logbeta2
71- 73 F3.1 [-] e_logbeta2 Lower limit uncertainty in logbeta2
75- 78 F4.1 [-] logbetadN Log βdN parameter
80- 82 F3.1 [-] E_logbetadN Upper limit uncertainty in logbetadN
84- 86 F3.1 [-] e_logbetadN Lower limit uncertainty in logbetadN
88- 91 F4.1 [-] logbetadC Log βdC parameter
93- 95 F3.1 [-] E_logbetadC Upper limit uncertainty in logbetadC
97- 99 F3.1 [-] e_logbetadC Lower limit uncertainty in logbetadC
101-103 F3.1 d t1 Rest frame duration of power law rise phase
105-107 F3.1 d E_t1 Upper limit uncertainty in t1
109-111 F3.1 d e_t1 Lower limit uncertainty in t1
113-114 I2 d tp Duration of the exponential rise phase
116-117 I2 d E_tp Upper limit uncertainty in tp
119-120 I2 d e_tp Lower limit uncertainty in tp
122-124 I3 d t2 Duration of falling component of plateau phase
126-127 I2 d E_t2 Upper limit uncertainty in t2
129-130 I2 d e_t2 Lower limit uncertainty in t2
132-133 I2 d td Duration of transitional phase
135-136 I2 d E_td Upper limit uncertainty in td
138-139 I2 d e_td Lower limit uncertainty in td
141-144 F4.2 mag Mpk [0.04/8.1] Absolute peak flux (1)
146-149 F4.2 mag E_Mpk Upper limit uncertainty in Mpk
151-154 F4.2 mag e_Mpk Lower limit uncertainty in Mpk
156-160 F5.3 mag Vmag [0.001/0.5] The V band magnitude (Vega system)
162-166 F5.3 mag E_Vmag [0.001/0.2] Upper limit uncertainty in Vmag
168-172 F5.3 mag e_Vmag [0.001/0.5] Lower limit uncertainty in Vmag
--------------------------------------------------------------------------------
Note (1): For numerical convenience, we define l in arbitrary scaled units
relative to the absolute magnitude M , such that
Mpk=-2.5log10(107xl).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 d Epoch [-15/111] Epoch in rest-frame days since peak
5- 8 F4.2 mag gmag [0.09/3]? The g band magnitude (1)
10- 13 F4.2 mag E_gmag ? Upper limit uncertainty in gmag
15- 18 F4.2 mag e_gmag ? Lower limit uncertainty in gmag
20- 23 F4.2 mag rmag [0.06/2]? The r band magnitude (1)
25- 28 F4.2 mag E_rmag ? Upper limit uncertainty in rmag
30- 33 F4.2 mag e_rmag ? Lower limit uncertainty in rmag
35- 38 F4.2 mag imag [0.04/1.7]? The i band magnitude (1)
40- 43 F4.2 mag E_imag ? Upper limit uncertainty in imag
45- 48 F4.2 mag e_imag ? Lower limit uncertainty in imag
50- 53 F4.2 mag zmag [0.02/1.6]? The z band magnitude (1)
55- 58 F4.2 mag E_zmag ? Upper limit uncertainty in zmag
60- 63 F4.2 mag e_zmag ? Lower limit uncertainty in zmag
65- 69 F5.2 mag ymag [-0.09/1.2]? The y band magnitude (1)
71- 74 F4.2 mag E_ymag ? Upper limit uncertainty in ymag
76- 79 F4.2 mag e_ymag ? Lower limit uncertainty in ymag
--------------------------------------------------------------------------------
Note (1): The grizy photometry is reported in terms of magnitude below peak;
the ranges reflect the 16th-84th percentile variation in observed
light-curve behavior.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [PS1]
4- 9 A6 --- PS1 PS1 transient designation (-YYaaa)
11- 16 F6.2 mag rmag [-19.7/-14.7] Peak r band magnitude (1)
18- 21 F4.2 mag E_rmag The 84th percentile in rmag
23- 26 F4.2 mag e_rmag The 16th percentile in rmag
28- 30 I3 d tplat [51/127] r band plateau duration (2)
32- 33 I2 d E_tplat The 84th percentile in tplat
35- 36 I2 d e_tplat The 16th percentile in tplat
38- 42 F5.2 [10+43W] logL50 [41/46] Log pseudo-bolometric luminosity
at day 50 (3)
44- 47 F4.2 [10+43W] E_logL50 The 84th percentile in logL50
49- 52 F4.2 [10+43W] e_logL50 The 16th percentile in logL50
54- 58 F5.2 mag Dm15 [-1.2/-0.02] Rest frame r band decline rate
60- 63 F4.2 mag E_Dm15 The 84th percentile in Dm15
65- 68 F4.2 mag e_Dm15 The 16th percentile in Dm15
70- 74 F5.2 Msun MNi [0/27.8] Ejected nickel mass (4)
76- 84 F9.2 Msun E_MNi [0/157946] The 84th percentile in MNi
86- 90 F5.2 Msun e_MNi [0/24.1] The 16th percentile in MNi
92- 95 F4.1 Msun Min [12/25]? Progenitor initial mass (5)
97-100 F4.1 Msun E_Min [11/24]? The 84th percentile in Min
102-105 F4.1 Msun e_Min [3/21]? The 16th percentile in Min
107-110 I4 Rsun R0 [660/1340]? Progenitor initial radius (5)
112-115 I4 Rsun B_R0 [700/1390]? The 84th percentile in R0
117-120 I4 Rsun b_R0 [200/1070]? The 16th percentile in R0
122-126 F5.2 [10+44J] E51 [2.8/19.4]? Explosion energy in 1051erg (5)
128-133 F6.2 [10+44J] E_E51 [2.3/540]? The 84th percentile in E51
135-139 F5.2 [10+44J] e_E51 [1/17.3]? The 16th percentile in E51
--------------------------------------------------------------------------------
Note (1): Derived directly from the model fits (Section 3.2), including
K-corrections, but not corrected for extinction.
Note (2): In rest frame days, not corrected for contamination by 56Ni.
Note (3): Measured from the fits to the PS1 photometry; the value quoted does
not include the bolometric correction described in Section 3.2.
Note (4): Estimated from comparison of the late-time bolometric light curve
to that of SN 1987A (but see Section 5.2 for a discussion of
reliability).
Note (5): Estimates come from the comparisons (see Section 5.3) to the models
of Kasen & Woosley (2009ApJ...703.2205K 2009ApJ...703.2205K); but see Section 5.4 for a
discussion of reliability. These theoretical estimates are reported
only if the central mass estimate falls within the model grid
(12-25MSun); but the full posterior distribution for the reported
values includes extrapolations to values beyond the model grid,
as reflected in the reported uncertainties.
--------------------------------------------------------------------------------
Global notes:
Note (G1): This table includes only SNe classified as SNe IIP by the
criteria of Section 3.4.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 18-Jun-2015