J/ApJ/799/208       Type IIP supernovae from Pan-STARRS1       (Sanders+, 2015)

Toward characterization of the Type IIP supernova progenitor population: a statistical sample of light curves from Pan-STARRS1. Sanders N.E., Soderberg A.M., Gezari S., Betancourt M., Chornock R., Berger E., Foley R.J., Challis P., Drout M., Kirshner R.P., Lunnan R., Marion G.H., Margutti R., McKinnon R., Milisavljevic D., Narayan G., Rest A., Kankare E., Mattila S., Smartt S.J., Huber M.E., Burgett W.S., Draper P.W., Hodapp K.W., Kaiser N., Kudritzki R.P., Magnier E.A., Metcalfe N., Morgan J.S., Price P.A., Tonry J.L., Wainscoat R.J., Waters C. <Astrophys. J., 799, 208 (2015)> =2015ApJ...799..208S 2015ApJ...799..208S (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae; Photometry, ugriz; Surveys; Redshifts; Spectroscopy Keywords: supernovae: general; surveys Abstract: In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of ≲0.2mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches. Description: We select an SN II light-curve sample from the transients discovered and monitored by Pan-STARRS1 (PS1) since the initiation of the survey in 2010, consisting of 18953 relevant photometric data points, 5096 of which are robust transient detections. The PS1 observations are obtained through a set of five broadband filters, which we refer to interchangeably as gP1, rP1, iP1, zP1, and yP1 or simply grizy (Stubbs et al. 2010ApJS..191..376S 2010ApJS..191..376S). We begin with a selection of PS1-discovered SNe that were classified as Type II through our spectroscopic follow-up campaign: 112 objects in total. Spectra were obtained using the Blue Channel and Hectospec spectrographs of the 6.5m MMT telescope, the Low Dispersion Survey Spectrograph (LDSS3) and Inamori-Magellan Areal Camera and Spectrograph (IMACS) of the 6.5m Magellan telescopes, the Gemini Multi-Object Spectrograph of the 8m Gemini telescopes (GMOS), and the Andalucia Faint Object Spectrograph and Camera (ALFOSC) at the 2.6m Nordic Optical Telescope. Details of our final SN IIP sample, as described in Section 3.4, are listed in Table 1. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 65 77 Pan-STARRS1 type IIP SN sample table2.dat 172 375 *Pan-STARRS1 type IIP SN light curve parameters table3.dat 79 43 SN IIP grizy template light curves table5.dat 139 67 Light curve and modeled progenitor parameters for PS1 SNe IIP -------------------------------------------------------------------------------- Note on table2.dat: Light-curve parameters are listed separately for each photometric band, in sequence. The parameters are defined in Section 3.1. -------------------------------------------------------------------------------- See also: J/A+A/574/A60 : Light curve templates of SNe Ib/c from SDSS (Taddia+, 2015) J/MNRAS/442/844 : Type II-P supernovae BVRI light curves (Faran+, 2014) J/MNRAS/433/1871 : UBVRI griz light curves of SN 2012aw (Bose+, 2013) J/ApJ/775/125 : Metallicity of galaxies from colors (Sanders+, 2013) J/A+A/558/A131 : Model spectra of hot stars at the pre-SN stage (Groh+, 2013) J/A+A/558/A103 : Stellar models with rotation, Z=0.002 (Georgy+, 2013) J/A+A/555/A142 : Spectra of 5 Type II supernovae (Inserra+, 2013) J/ApJ/750/99 : The Pan-STARRS1 photometric system (Tonry+, 2012) J/A+A/537/A146 : Stellar models with rotation, Z=0.014 (Ekstrom+, 2012) J/ApJ/742/89 : Relations between spectra & colors of SNe Ia (Foley+, 2011) J/ApJ/741/97 : Light curves of Ibc supernovae (Drout+, 2011) J/MNRAS/412/1441 : SNe luminosity functions (Li+, 2011) J/MNRAS/408/827 : Simulations of supernova explosions (Dessart+, 2010) J/ApJ/708/661 : SDSS-II SN Survey: SNe II-P standardization (D'Andrea+, 2010) J/ApJ/699/L139 : Spectral parameters of SNe Ia (Wang+, 2009) J/ApJ/666/674 : ESSENCE supernova survey (Miknaitis+, 2007) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [PS1] 4- 9 A6 --- PS1 PS1 transient designation (-YYaaa) (G1) (1) 11- 12 I2 --- Field [1/10] PS1 Medium Deep Field where transient discovered 14- 15 I2 h RAh Hour of Right Ascension (J2000) 17- 18 I2 min RAm Minute of Right Ascension (J2000) 20- 25 F6.3 s RAs Second of Right Ascension (J2000) 27 A1 --- DE- Sign of the Declination (J2000) 28- 29 I2 deg DEd Degree of Declination (J2000) 31- 32 I2 arcmin DEm Arcminute of Declination (J2000) 34- 38 F5.2 arcsec DEs Arcsecond of Declination (J2000) 40- 44 I5 d MJD Modified Julian Date of discovery 46- 50 F5.3 --- z [0.04/0.4] Redshift from follow-up spectroscopy 52- 53 I2 --- Ng [0/30] Number of PS1 g band observations 55- 56 I2 --- Nr [1/36] Number of PS1 r band observations 58- 59 I2 --- Ni [0/37] Number of PS1 i band observations 61- 62 I2 --- Nz [0/30] Number of PS1 z band observations 64- 65 I2 --- Ny [0/27] Number of PS1 y band observations -------------------------------------------------------------------------------- Note (1): PS1-12bml has been added by CDS to match the list of objects in table 2 (data taken in ArXiV:1404.2004v2). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 A1 --- Band PS1 filter used (g, i, r, y or z) 2- 6 A5 --- --- [-band] 8- 10 A3 --- --- [PS1] 11- 16 A6 --- PS1 PS1 transient designation (G1) 18- 24 F7.1 d t0 Modified Julian Date of the epoch of explosion 26- 29 F4.1 d E_t0 Upper limit uncertainty in t0 31- 34 F4.1 d e_t0 Lower limit uncertainty in t0 36- 39 F4.1 [-] logalpha Log α parameter 41- 43 F3.1 [-] E_logalpha Upper limit uncertainty in logalpha 45- 47 F3.1 [-] e_logalpha Lower limit uncertainty in logalpha 49- 52 F4.1 [-] logbeta1 Log β1 parameter 54- 56 F3.1 [-] E_logbeta1 Upper limit uncertainty in logbeta1 58- 60 F3.1 [-] e_logbeta1 Lower limit uncertainty in logbeta1 62- 65 F4.1 [-] logbeta2 Log β2 parameter 67- 69 F3.1 [-] E_logbeta2 Upper limit uncertainty in logbeta2 71- 73 F3.1 [-] e_logbeta2 Lower limit uncertainty in logbeta2 75- 78 F4.1 [-] logbetadN Log βdN parameter 80- 82 F3.1 [-] E_logbetadN Upper limit uncertainty in logbetadN 84- 86 F3.1 [-] e_logbetadN Lower limit uncertainty in logbetadN 88- 91 F4.1 [-] logbetadC Log βdC parameter 93- 95 F3.1 [-] E_logbetadC Upper limit uncertainty in logbetadC 97- 99 F3.1 [-] e_logbetadC Lower limit uncertainty in logbetadC 101-103 F3.1 d t1 Rest frame duration of power law rise phase 105-107 F3.1 d E_t1 Upper limit uncertainty in t1 109-111 F3.1 d e_t1 Lower limit uncertainty in t1 113-114 I2 d tp Duration of the exponential rise phase 116-117 I2 d E_tp Upper limit uncertainty in tp 119-120 I2 d e_tp Lower limit uncertainty in tp 122-124 I3 d t2 Duration of falling component of plateau phase 126-127 I2 d E_t2 Upper limit uncertainty in t2 129-130 I2 d e_t2 Lower limit uncertainty in t2 132-133 I2 d td Duration of transitional phase 135-136 I2 d E_td Upper limit uncertainty in td 138-139 I2 d e_td Lower limit uncertainty in td 141-144 F4.2 mag Mpk [0.04/8.1] Absolute peak flux (1) 146-149 F4.2 mag E_Mpk Upper limit uncertainty in Mpk 151-154 F4.2 mag e_Mpk Lower limit uncertainty in Mpk 156-160 F5.3 mag Vmag [0.001/0.5] The V band magnitude (Vega system) 162-166 F5.3 mag E_Vmag [0.001/0.2] Upper limit uncertainty in Vmag 168-172 F5.3 mag e_Vmag [0.001/0.5] Lower limit uncertainty in Vmag -------------------------------------------------------------------------------- Note (1): For numerical convenience, we define l in arbitrary scaled units relative to the absolute magnitude M , such that Mpk=-2.5log10(107xl). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 d Epoch [-15/111] Epoch in rest-frame days since peak 5- 8 F4.2 mag gmag [0.09/3]? The g band magnitude (1) 10- 13 F4.2 mag E_gmag ? Upper limit uncertainty in gmag 15- 18 F4.2 mag e_gmag ? Lower limit uncertainty in gmag 20- 23 F4.2 mag rmag [0.06/2]? The r band magnitude (1) 25- 28 F4.2 mag E_rmag ? Upper limit uncertainty in rmag 30- 33 F4.2 mag e_rmag ? Lower limit uncertainty in rmag 35- 38 F4.2 mag imag [0.04/1.7]? The i band magnitude (1) 40- 43 F4.2 mag E_imag ? Upper limit uncertainty in imag 45- 48 F4.2 mag e_imag ? Lower limit uncertainty in imag 50- 53 F4.2 mag zmag [0.02/1.6]? The z band magnitude (1) 55- 58 F4.2 mag E_zmag ? Upper limit uncertainty in zmag 60- 63 F4.2 mag e_zmag ? Lower limit uncertainty in zmag 65- 69 F5.2 mag ymag [-0.09/1.2]? The y band magnitude (1) 71- 74 F4.2 mag E_ymag ? Upper limit uncertainty in ymag 76- 79 F4.2 mag e_ymag ? Lower limit uncertainty in ymag -------------------------------------------------------------------------------- Note (1): The grizy photometry is reported in terms of magnitude below peak; the ranges reflect the 16th-84th percentile variation in observed light-curve behavior. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [PS1] 4- 9 A6 --- PS1 PS1 transient designation (-YYaaa) 11- 16 F6.2 mag rmag [-19.7/-14.7] Peak r band magnitude (1) 18- 21 F4.2 mag E_rmag The 84th percentile in rmag 23- 26 F4.2 mag e_rmag The 16th percentile in rmag 28- 30 I3 d tplat [51/127] r band plateau duration (2) 32- 33 I2 d E_tplat The 84th percentile in tplat 35- 36 I2 d e_tplat The 16th percentile in tplat 38- 42 F5.2 [10+43W] logL50 [41/46] Log pseudo-bolometric luminosity at day 50 (3) 44- 47 F4.2 [10+43W] E_logL50 The 84th percentile in logL50 49- 52 F4.2 [10+43W] e_logL50 The 16th percentile in logL50 54- 58 F5.2 mag Dm15 [-1.2/-0.02] Rest frame r band decline rate 60- 63 F4.2 mag E_Dm15 The 84th percentile in Dm15 65- 68 F4.2 mag e_Dm15 The 16th percentile in Dm15 70- 74 F5.2 Msun MNi [0/27.8] Ejected nickel mass (4) 76- 84 F9.2 Msun E_MNi [0/157946] The 84th percentile in MNi 86- 90 F5.2 Msun e_MNi [0/24.1] The 16th percentile in MNi 92- 95 F4.1 Msun Min [12/25]? Progenitor initial mass (5) 97-100 F4.1 Msun E_Min [11/24]? The 84th percentile in Min 102-105 F4.1 Msun e_Min [3/21]? The 16th percentile in Min 107-110 I4 Rsun R0 [660/1340]? Progenitor initial radius (5) 112-115 I4 Rsun B_R0 [700/1390]? The 84th percentile in R0 117-120 I4 Rsun b_R0 [200/1070]? The 16th percentile in R0 122-126 F5.2 [10+44J] E51 [2.8/19.4]? Explosion energy in 1051erg (5) 128-133 F6.2 [10+44J] E_E51 [2.3/540]? The 84th percentile in E51 135-139 F5.2 [10+44J] e_E51 [1/17.3]? The 16th percentile in E51 -------------------------------------------------------------------------------- Note (1): Derived directly from the model fits (Section 3.2), including K-corrections, but not corrected for extinction. Note (2): In rest frame days, not corrected for contamination by 56Ni. Note (3): Measured from the fits to the PS1 photometry; the value quoted does not include the bolometric correction described in Section 3.2. Note (4): Estimated from comparison of the late-time bolometric light curve to that of SN 1987A (but see Section 5.2 for a discussion of reliability). Note (5): Estimates come from the comparisons (see Section 5.3) to the models of Kasen & Woosley (2009ApJ...703.2205K 2009ApJ...703.2205K); but see Section 5.4 for a discussion of reliability. These theoretical estimates are reported only if the central mass estimate falls within the model grid (12-25MSun); but the full posterior distribution for the reported values includes extrapolations to values beyond the model grid, as reflected in the reported uncertainties. -------------------------------------------------------------------------------- Global notes: Note (G1): This table includes only SNe classified as SNe IIP by the criteria of Section 3.4. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 18-Jun-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line