J/ApJ/804/76 ZnII lines and collision strengths (Kisielius+, 2015)
Atomic data for Zn II: improving spectral diagnostics of chemical evolution
in high-redshift galaxies.
Kisielius R., Kulkarni V.P., Ferland G.J., Bogdanovich P., Som D.,
Lykins M.L.
<Astrophys. J., 804, 76 (2015)>
=2015ApJ...804...76K 2015ApJ...804...76K
ADC_Keywords: Atomic physics
Keywords: atomic data; atomic processes; galaxies: abundances; ISM: abundances;
quasars: absorption lines; quasars: emission lines
Abstract:
Damped Lyα (DLA) and sub-DLA absorbers in quasar spectra provide
the most sensitive tools for measuring the element abundances of
distant galaxies. The estimation of abundances from absorption lines
depends sensitively on the accuracy of the atomic data used. We have
started a project to produce new atomic spectroscopic parameters for
optical and UV spectral lines using state-of-the-art computer codes
employing a very broad configuration interaction (CI) basis. Here we
report our results for ZnII, an ion used widely in studies of the
interstellar medium (ISM) as well as DLAs and sub-DLAs. We report new
calculations of many energy levels of Zn II and the line strengths of
the resulting radiative transitions. Our calculations use the CI
approach within a numerical Hartree-Fock framework. We use both
nonrelativistic and quasi-relativistic one-electron radial orbitals.
We have incorporated the results of these atomic calculations into the
plasma simulation code Cloudy and applied them to a lab plasma and
examples of a DLA and a sub-DLA. Our values of the ZnII
λλ2026,2062 oscillator strengths are higher than
previous values by 0.10dex. The Cloudy calculations for representative
absorbers with the revised Zn atomic data imply ionization corrections
lower than calculated earlier by 0.05dex. The new results imply that
Zn metallicities should be lower by 0.1dex for DLAs and by
0.13-0.15dex for sub-DLAs than in past studies. Our results can be
applied to other studies of ZnII in the Galactic and extragalactic ISM.
Description:
Our calculations are performed by employing Hartree-Fock radial
orbitals (HFRO). The relativistic corrections are included in the
Breit-Pauli approximation. We determine spectral parameters for four
even configurations, 3d104s, 3d94s2, 3d104d, and 3d105s, and
for three odd configurations, 3d104p, 3d105p, and 3d94s4p. HFRO
is complemented with transformed radial orbitals (TRO) PTRO(nl\r)
See section 2.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 74 27 Comparison of calculated ZnII level energies
and their percentage deviations with experimental
data from the NIST database
table2.dat 21 606 Transition line strengths S for ZnII determined
in the CITRO approximation
table4.dat 147 345 Effective collision strengths for the
electron-impact excitation of ZnII at 14
selected temperatures determined in the
plane-wave Born approximation
--------------------------------------------------------------------------------
See also:
J/ApJ/780/76 : SII transition line strengths (Kisielius+, 2014)
J/MNRAS/435/482 : DLA system from SDSS DR5 (Jorgenson+, 2013)
J/A+A/556/A141 : ESO-UVES Advanced Data Products (EUADP) sample (Zafar+, 2013)
J/A+A/547/L1 : SDSS-III DR9 DLA catalogue (Noterdaeme+, 2012)
J/ApJ/755/89 : Metallicities of damped Lyα systems (Rafelski+, 2012)
J/ApJ/700/1299 : Gas-phase element depletions in the ISM (Jenkins, 2009)
J/ApJ/661/88 : Zn measurements in sub-DLAs and DLAs QSOs (Kulkarni+, 2007)
J/ApJ/648/L97 : 2 SDSS QSOs super-Lyman limit systems (Prochaska+ 2006)
J/ApJ/635/123 : The SDSS-DR3 damped Lyα survey (Prochaska+, 2005)
J/ApJ/543/552 : z>3 DLA systems (Storrie-Lombardi+, 2000)
http://www.nist.gov/pml/data/asd.cfm : NIST atomic spectra database
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- N [1/27] Level index
4- 22 A19 --- State Configuration
24- 25 I2 --- 2J+1 [2/10] 2J+1 value
27- 35 F9.2 cm-1 E(NIST) [0/114834] Experimental energy from NIST
database
37- 42 I6 cm-1 E0 [0/114759] our HF data with a complete
CI expansion using TRO (CITRO) (1)
44- 48 F5.2 % dE0 [-1.1/1.9]? Percentage deviations of HF data
from the experimental energy
50- 55 I6 cm-1 E1 [0/115085] our HF data from the reduced CI
expansion calculation (CIred1TRO)
57- 61 F5.2 % dE1 [-2.8/2.5]? Percentage deviations of the
reduced CI data from the observed energy
63- 68 I6 cm-1 E2 [0/117659] our HF data from the reduced CI
expansion calculation (CIred2TRO)
70- 74 F5.2 % dE2 [-0.7/6.2]? Percentage deviations of the
reduced CI data from the observed energy
--------------------------------------------------------------------------------
Note (1): Using non-orthogonal spline Configuration Interaction (CI),
multiconfiguration Hartree-Fock (HF) method, and
Transformed Radial Orbital (TRO). Please see Section 2 in the paper
for all the details about the CIHF+TRO approximation.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- --- [S] Transition data type: S=line strength
3- 4 A2 --- Type Transition line type: E1/E2/E3 or M1/M2
6- 7 I2 --- N0 [1/26] Lower level index
10- 11 I2 --- N1 [2/27] Upper level index
13- 21 E9.4 --- S Transition line strength in atomic units
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- N0 [1/26] Lower level index
4- 6 I3 --- N1 [2/27] Upper level index
8- 17 E10.3 --- CS400 Effective collision strength at T=4.0x102K
18- 27 E10.3 --- CS800 Effective collision strength at T=8.0x102K
28- 37 E10.3 --- CS2k Effective collision strength at T=2.0x103K
38- 47 E10.3 --- CS4k Effective collision strength at T=4.0x103K
48- 57 E10.3 --- CS8k Effective collision strength at T=8.0x103K
58- 67 E10.3 --- CS20k Effective collision strength at T=2.0x104K
68- 77 E10.3 --- CS40k Effective collision strength at T=4.0x104K
78- 87 E10.3 --- CS80k Effective collision strength at T=8.0x104K
88- 97 E10.3 --- CS200k Effective collision strength at T=2.0x105K
98-107 E10.3 --- CS400k Effective collision strength at T=4.0x105K
108-117 E10.3 --- CS800k Effective collision strength at T=8.0x105K
118-127 E10.3 --- CS2M Effective collision strength at T=2.0x106K
128-137 E10.3 --- CS4M Effective collision strength at T=4.0x106K
138-147 E10.3 --- CS8M Effective collision strength at T=8.0x106K
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 05-Aug-2015