J/ApJ/804/76        ZnII lines and collision strengths        (Kisielius+, 2015)

Atomic data for Zn II: improving spectral diagnostics of chemical evolution in high-redshift galaxies. Kisielius R., Kulkarni V.P., Ferland G.J., Bogdanovich P., Som D., Lykins M.L. <Astrophys. J., 804, 76 (2015)> =2015ApJ...804...76K 2015ApJ...804...76K
ADC_Keywords: Atomic physics Keywords: atomic data; atomic processes; galaxies: abundances; ISM: abundances; quasars: absorption lines; quasars: emission lines Abstract: Damped Lyα (DLA) and sub-DLA absorbers in quasar spectra provide the most sensitive tools for measuring the element abundances of distant galaxies. The estimation of abundances from absorption lines depends sensitively on the accuracy of the atomic data used. We have started a project to produce new atomic spectroscopic parameters for optical and UV spectral lines using state-of-the-art computer codes employing a very broad configuration interaction (CI) basis. Here we report our results for ZnII, an ion used widely in studies of the interstellar medium (ISM) as well as DLAs and sub-DLAs. We report new calculations of many energy levels of Zn II and the line strengths of the resulting radiative transitions. Our calculations use the CI approach within a numerical Hartree-Fock framework. We use both nonrelativistic and quasi-relativistic one-electron radial orbitals. We have incorporated the results of these atomic calculations into the plasma simulation code Cloudy and applied them to a lab plasma and examples of a DLA and a sub-DLA. Our values of the ZnII λλ2026,2062 oscillator strengths are higher than previous values by 0.10dex. The Cloudy calculations for representative absorbers with the revised Zn atomic data imply ionization corrections lower than calculated earlier by 0.05dex. The new results imply that Zn metallicities should be lower by 0.1dex for DLAs and by 0.13-0.15dex for sub-DLAs than in past studies. Our results can be applied to other studies of ZnII in the Galactic and extragalactic ISM. Description: Our calculations are performed by employing Hartree-Fock radial orbitals (HFRO). The relativistic corrections are included in the Breit-Pauli approximation. We determine spectral parameters for four even configurations, 3d104s, 3d94s2, 3d104d, and 3d105s, and for three odd configurations, 3d104p, 3d105p, and 3d94s4p. HFRO is complemented with transformed radial orbitals (TRO) PTRO(nl\r) See section 2. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 74 27 Comparison of calculated ZnII level energies and their percentage deviations with experimental data from the NIST database table2.dat 21 606 Transition line strengths S for ZnII determined in the CITRO approximation table4.dat 147 345 Effective collision strengths for the electron-impact excitation of ZnII at 14 selected temperatures determined in the plane-wave Born approximation -------------------------------------------------------------------------------- See also: J/ApJ/780/76 : SII transition line strengths (Kisielius+, 2014) J/MNRAS/435/482 : DLA system from SDSS DR5 (Jorgenson+, 2013) J/A+A/556/A141 : ESO-UVES Advanced Data Products (EUADP) sample (Zafar+, 2013) J/A+A/547/L1 : SDSS-III DR9 DLA catalogue (Noterdaeme+, 2012) J/ApJ/755/89 : Metallicities of damped Lyα systems (Rafelski+, 2012) J/ApJ/700/1299 : Gas-phase element depletions in the ISM (Jenkins, 2009) J/ApJ/661/88 : Zn measurements in sub-DLAs and DLAs QSOs (Kulkarni+, 2007) J/ApJ/648/L97 : 2 SDSS QSOs super-Lyman limit systems (Prochaska+ 2006) J/ApJ/635/123 : The SDSS-DR3 damped Lyα survey (Prochaska+, 2005) J/ApJ/543/552 : z>3 DLA systems (Storrie-Lombardi+, 2000) http://www.nist.gov/pml/data/asd.cfm : NIST atomic spectra database Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- N [1/27] Level index 4- 22 A19 --- State Configuration 24- 25 I2 --- 2J+1 [2/10] 2J+1 value 27- 35 F9.2 cm-1 E(NIST) [0/114834] Experimental energy from NIST database 37- 42 I6 cm-1 E0 [0/114759] our HF data with a complete CI expansion using TRO (CITRO) (1) 44- 48 F5.2 % dE0 [-1.1/1.9]? Percentage deviations of HF data from the experimental energy 50- 55 I6 cm-1 E1 [0/115085] our HF data from the reduced CI expansion calculation (CIred1TRO) 57- 61 F5.2 % dE1 [-2.8/2.5]? Percentage deviations of the reduced CI data from the observed energy 63- 68 I6 cm-1 E2 [0/117659] our HF data from the reduced CI expansion calculation (CIred2TRO) 70- 74 F5.2 % dE2 [-0.7/6.2]? Percentage deviations of the reduced CI data from the observed energy -------------------------------------------------------------------------------- Note (1): Using non-orthogonal spline Configuration Interaction (CI), multiconfiguration Hartree-Fock (HF) method, and Transformed Radial Orbital (TRO). Please see Section 2 in the paper for all the details about the CIHF+TRO approximation. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 A1 --- --- [S] Transition data type: S=line strength 3- 4 A2 --- Type Transition line type: E1/E2/E3 or M1/M2 6- 7 I2 --- N0 [1/26] Lower level index 10- 11 I2 --- N1 [2/27] Upper level index 13- 21 E9.4 --- S Transition line strength in atomic units -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- N0 [1/26] Lower level index 4- 6 I3 --- N1 [2/27] Upper level index 8- 17 E10.3 --- CS400 Effective collision strength at T=4.0x102K 18- 27 E10.3 --- CS800 Effective collision strength at T=8.0x102K 28- 37 E10.3 --- CS2k Effective collision strength at T=2.0x103K 38- 47 E10.3 --- CS4k Effective collision strength at T=4.0x103K 48- 57 E10.3 --- CS8k Effective collision strength at T=8.0x103K 58- 67 E10.3 --- CS20k Effective collision strength at T=2.0x104K 68- 77 E10.3 --- CS40k Effective collision strength at T=4.0x104K 78- 87 E10.3 --- CS80k Effective collision strength at T=8.0x104K 88- 97 E10.3 --- CS200k Effective collision strength at T=2.0x105K 98-107 E10.3 --- CS400k Effective collision strength at T=4.0x105K 108-117 E10.3 --- CS800k Effective collision strength at T=8.0x105K 118-127 E10.3 --- CS2M Effective collision strength at T=2.0x106K 128-137 E10.3 --- CS4M Effective collision strength at T=4.0x106K 138-147 E10.3 --- CS8M Effective collision strength at T=8.0x106K -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 05-Aug-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line