J/ApJ/806/52          8 Fermi GRB afterglows follow-up          (Singer+, 2015)

The needle in the 100deg2 haystack: uncovering afterglows of Fermi GRBs with the Palomar Transient Factory. Singer L.P., Kasliwal M.M., Cenko S.B., Perley D.A., Anderson G.E., Anupama G.C., Arcavi I., Bhalerao V., Bue B.D., Cao Y., Connaughton V., Corsi A., Cucchiara A., Fender R.P., Fox D.B., Gehrels N., Goldstein A., Gorosabel J., Horesh A., Hurley K., Johansson J., Kann D.A., Kouveliotou C., Huang K., Kulkarni S.R., Masci F., Nugent P., Rau A., Rebbapragada U.D., Staley T.D., Svinkin D., Thone C.C., de Ugarte Postigo A., Urata Y., Weinstein A. <Astrophys. J., 806, 52 (2015)> =2015ApJ...806...52S 2015ApJ...806...52S (SIMBAD/NED BibCode)
ADC_Keywords: Gamma rays ; Photometry, UBVRI ; Photometry, ugriz ; Photometry, infrared ; Radio sources ; Redshifts Keywords: gamma-ray burst: individual: (GRB 130702A, GRB 140606B); gravitational waves; methods: observational; supernovae: general; surveys Abstract: The Fermi Gamma-ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi GRB Monitor instrument have posed a formidable obstacle to locating the bursts' host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity (TOO) mode for the intermediate Palomar Transient Factory (iPTF) in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: 8 afterglow discoveries out of 35 searches. Two of the bursts with detected afterglows (GRBs 130702A and 140606B) were at low redshift (z=0.145 and 0.384, respectively) and had spectroscopically confirmed broad-line Type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star rather than the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of the Zwicky Transient Facility, we discuss how we will continue to expand this effort to find optical counterparts of binary neutron star mergers that may soon be detected by Advanced LIGO and Virgo. Description: In this work, we present the GBM-iPTF (intermediate Palomar Transient Factory) afterglows from the first 13 months of this project. Follow-up observations include R-band photometry from the P48, multicolor photometry from the P60, spectroscopy (acquired with the P200, Keck, Gemini, APO, Magellan, Very Large Telescope (VLT), and GTC), and radio observations with the Very Large Array (VLA), the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Australia Telescope Compact Array (ATCA), and the Arcminute Microkelvin Imager (AMI). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 60 333 Optical observations of GBM-iPTF afterglows table3.dat 52 53 Radio observations of GBM-iPTF afterglows table4.dat 89 8 GBM-iPTF detections -------------------------------------------------------------------------------- See also: V/134 : Atlas of Radio/X-ray associations (ARXA) (Flesch, 2010) J/ApJS/216/32 : Localizations of GRBs with Fermi GBM (Connaughton+, 2015) J/ApJS/211/13 : The second Fermi/GBM GRB catalog (4yr) (von Kienlin+, 2014) J/A+A/568/A19 : Photometry of 3 γ-ray burst supernovae (Cano+, 2014) J/A+A/557/A100 : Fermi and Swift GRBs Epeak-Eiso relation (Heussaff+, 2013) J/MNRAS/431/3608 : BeppoSAX/GRBM and Fermi/GBM long GRBs (Dichiara+, 2013) J/other/Nat/494.65 : SN 2010mc outburst before explosion (Ofek+, 2013) J/ApJS/207/39 : IPN supplement to the Fermi GBM (Hurley+, 2013) J/ApJS/199/18 : The Fermi GBM catalog (Paciesas+, 2012) J/ApJ/756/112 : Fermi/GBM GRB time-resolved spectral analysis (Lu+, 2012) J/ApJ/754/121 : GRBs from Fermi/GBM and LAT (The Fermi Team, 2012) J/ApJ/747/L5 : R-band observations of PTF 10vgv (Corsi+, 2012) J/ApJ/746/156 : Radio afterglow observations of GRBs (Chandra+, 2012) J/MNRAS/412/1441 : SNe luminosity functions (Li+, 2011) J/A+A/525/A53 : GBM parameters for detected FERMI bursts (Guetta+, 2011) J/ApJ/720/1513 : The afterglows of Swift-era GRBs. I. (Kann+, 2010) J/ApJ/711/495 : Durations of Swift/BAT GRBs (Butler+, 2010) J/ApJ/704/1405 : Testing the Epeak-Eiso relation for GRBs (Krimm+, 2009) J/MNRAS/397/1177 : Swift-XRT observations of GRBs (Evans+, 2009) J/ApJ/701/824 : Afterglows of short and long-duration GRBs (Nysewander+, 2009) J/ApJ/696/870 : Catalina Real-time Transient Survey (CRTS) (Drake+, 2009) J/ApJ/693/1484 : Early optical afterglow catalog (Cenko+, 2009) http://swift.gsfc.nasa.gov/archive/grb_table/ : Swift GRBs archive http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html : Fermi GMB cat. http://gcn.gsfc.nasa.gov/ : GCN home page Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- GRB GRB name 9- 13 A5 --- OT iPTF name of optical afterglow 15- 24 A10 "Y/M/D" Obs.date UTC date of midpoint of observation 26- 30 A5 "h:m" Obs.time UTC time of midpoint of observation 32- 36 F5.2 d delt [0.01/34] Time of relative to GBM trigger 38- 43 A6 --- Inst Instrument used in observation (P48, P60, DCT, UVOT, Keck I, GROND or RATIR) (1) 45- 46 A2 --- Filt Filter used in observation (UBVR, griz, g'r'i'z', JHKs or Y,Z) 48 A1 --- l_mag Limit flag on mag 50- 54 F5.2 mag mag [15.8/24.3] The AB magnitude in Filt; not corrected for Galactic extinction 56- 60 F5.2 mag e_mag [0.01/0.6]? 1σ uncertainty in mag -------------------------------------------------------------------------------- Note (1): Instrument as follows: RATIR = Reionization and Transients InfraRed camera (RATIR) data are from GCNs 2013GCN..14980...1B 2013GCN..14980...1B, 2013GCN..14993...1B and 2014GCN..16236...1B GROND = Gamma-Ray Burst Optical and Near-Infrared Detector (GROND) data are from 2013GCN..15328...1S Keck I = Keck near-infrared data for GRB 140606B are from 2014GCN..16387...1P DCT = 4.3m Discovery Channel Telescope, in Happy Jack, AZ. P48 = Palomar 48 inch Oschin telescope P60 = Palomar 60 inch telescope UVOT = Swift UV/Optical Telescope -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- GRB GRB name 9- 13 A5 --- OT iPTF name of optical afterglow 15- 24 A10 "YYYY/MM/DD" Date UTC date of observation start 26- 30 F5.2 d delt [0.1/48] Time of relative to GBM trigger 32- 37 A6 --- Inst Instrument used in observation (AMI, CARMA, VLA or ATCA) (1) 38- 41 F4.1 GHz Freq [5/93] Frequency of observation 43 A1 --- l_S Limit flag on S 45- 48 I4 mag S [26/1890] Flux density at Freq 50- 52 I3 mag e_S [10/690]? Uncertainty in S (2) -------------------------------------------------------------------------------- Note (1): Instrument as follows: ATCA = Australia Telescope Compact Array (ATCA) observation from 2013GCN..15395...1H CARMA = Combined Array for Research in Millimeter-wave Astronomy VLA = Very Large Array AMI = Arcminute Microkelvin Imager Note (2): For detections, the confidence intervals are 1σ statistical uncertainties added in quadrature with an estimated 5% systematic error. For non-detections, we show 3σ upper limits. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [GRB] 4- 10 A7 --- GRB GRB name 12- 20 A9 --- OT iPTF name of optical afterglow 22- 23 I2 h RAh Hour of Right Ascension (J2000) 25- 26 I2 min RAm Minute of Right Ascension (J2000) 28- 29 I2 s RAs Second of Right Ascension (J2000) 31 A1 --- DE- Sign of the Declination (J2000) 32- 33 I2 deg DEd Degree of Declination (J2000) 35- 36 I2 arcmin DEm Arcminute of Declination (J2000) 38- 39 I2 arcsec DEs Arcsecond of Declination (J2000) 41- 43 I3 deg GLAT Galactic latitude (1) 45- 50 F6.4 --- z [0.1/3.3] Redshift 52- 54 I3 keV Epeak [18/834] Peak rest energy 56- 58 I3 keV e_Epeak [3/317] Uncertainty in Epeak 60 A1 --- l_Egamma Limit flag on Egamma 61- 66 F6.3 10+45W Egamma [0.06/25] Rest, bolometric, isotropic energy (2) 68- 72 F5.3 10+45W e_Egamma [0.001/1.3] Uncertainty in Egamma 74- 78 F5.1 s T90 [4.5/115] The T90 time 80- 83 F4.1 s e_T90 [0.2/12.1] Uncertainty in T90 85- 89 F5.2 mag Rmag [15.8/19.9] Apparent R band magnitude in initial P48 detection -------------------------------------------------------------------------------- Note (1): Of optical afterglow. This is one of the main factors that influences the number of optical transient candidates in Table 1. Note (2): For a 1keV-10MeV rest frame bandpass. The rest-frame spectral properties for GRB 130702A are reproduced from Amati et al. (2013GCN.15025....1A 2013GCN.15025....1A). For all other bursts, we calculated these quantities from the spectral fits (the scat files) in the Fermi GBM catalog (Goldstein et al. 2012ApJS..199...19G 2012ApJS..199...19G) using the k-correction procedure described by Bloom et al. (2001AJ....121.2879B 2001AJ....121.2879B). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 08-Oct-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line