J/ApJ/835/173   Kepler asteroseismic LEGACY sample. II.   (Silva Aguirre+, 2017)

Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY sample. II. Radii, masses, and ages. Silva Aguirre V., Lund M.N., Antia H.M., Ball W.H., Basu S., Christensen-Dalsgaard J., Lebreton Y., Reese D.R., Verma K., Casagrande L., Justesen A.B., Mosumgaard J.R., Chaplin W.J., Bedding T.R., Davies G.R., Handberg R., Houdek G., Huber D., Kjeldsen H., Latham D.W., White T.R., Coelho H.R., Miglio A., Rendle B. <Astrophys. J., 835, 173-173 (2017)> =2017ApJ...835..173S 2017ApJ...835..173S (SIMBAD/NED BibCode)
ADC_Keywords: Stars, masses ; Stars, ages ; Stars, diameters ; Stars, distances ; Abundances Keywords: asteroseismology; stars: fundamental parameters; stars: oscillations Abstract: We use asteroseismic data from the Kepler satellite to determine fundamental stellar properties of the 66 main-sequence targets observed for at least one full year by the mission. We distributed tens of individual oscillation frequencies extracted from the time series of each star among seven modeling teams who applied different methods to determine radii, masses, and ages for all stars in the sample. Comparisons among the different results reveal a good level of agreement in all stellar properties, which is remarkable considering the variety of codes, input physics, and analysis methods employed by the different teams. Average uncertainties are of the order of ∼2% in radius, ∼4% in mass, and ∼10% in age, making this the best-characterized sample of main-sequence stars available to date. Our predicted initial abundances and mixing-length parameters are checked against inferences from chemical enrichment laws ΔY/ΔZ and predictions from 3D atmospheric simulations. We test the accuracy of the determined stellar properties by comparing them to the Sun, angular diameter measurements, Gaia parallaxes, and binary evolution, finding excellent agreement in all cases and further confirming the robustness of asteroseismically determined physical parameters of stars when individual frequencies of oscillation are available. Baptised as the Kepler dwarfs LEGACY sample, these stars are the solar-like oscillators with the best asteroseismic properties available for at least another decade. All data used in this analysis and the resulting stellar parameters are made publicly available for the community. Description: The 66 stars comprising the LEGACY sample were chosen from more than 500 main-sequence and subgiant targets in which Kepler detected oscillations (Chaplin+ 2014, J/ApJS/210/1). We selected all targets that had more than one year of short-cadence observations, and where inspection of the power spectrum did not reveal any clear signature of bumped l=1 modes. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 169 7 Solar properties determined from each pipeline table3.dat 67 66 Global asteroseismic and atmospheric properties of our sample table4.dat 396 396 Stellar properties for the LEGACY dwarfs sample determined by each pipeline -------------------------------------------------------------------------------- See also: I/121 : Common proper motions stars in AGK3 (Halbwachs, 1986) V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) J/A+A/275/101 : Chemical evolution of the galactic disk I. (Edvardsson+ 1993) J/A+A/329/943 : F + G solar neighbourhood stars new ages (Ng+ 1998) J/ApJS/168/297 : Stellar parameters of nearby cool stars (Takeda+, 2007) J/A+A/508/L17 : Abundances in solar analogs (Ramirez+, 2009) J/A+A/512/A54 : Teff and Fbol from Infrared Flux Method (Casagrande+, 2010) J/ApJ/749/152 : Asteroseismic analysis of 22 solar-type stars (Mathur+, 2012) J/MNRAS/423/122 : Abundances of 93 solar-type Kepler targets (Bruntt+, 2012) J/MNRAS/427/343 : Infrared excesses of Hipparcos stars (McDonald+, 2012) J/ApJS/199/30 : Effective temperature scale for KIC stars (Pinsonneault+, 2012 J/ApJ/767/127 : Asteroseismic solutions for 77 Kepler stars (Huber+, 2013) J/ApJS/210/1 : Asteroseismic study of solar-type stars (Chaplin+, 2014) J/ApJ/787/110 : SAGA: Stromgren survey of seismic KIC stars (Casagrande+, 2014 J/ApJS/215/19 : APOKASC catalog of Kepler red giants (Pinsonneault+, 2014) J/A+A/573/A89 : STAGGER-grid of 3D stellar models. III. (Magic+, 2015) J/MNRAS/447/2714 : Flare stars across the H-R diagram (Balona+, 2015) J/ApJ/808/187 : Metallicities of KIC stars without planets (Buchhave+, 2015) J/MNRAS/452/2127 : Fundamental param. of Kepler stars (Silva Aguirre+, 2015) J/A+A/585/A5 : Exoplanet hosts/field stars age consistency (Bonfanti+, 2016) J/ApJ/831/L6 : Eclipsing binary parallaxes with Gaia data (Stassun+, 2016) J/ApJ/835/172 : Kepler asteroseismic LEGACY sample. I. (Lund+, 2017) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Pipe Pipeline identifier (1) 8- 13 F6.4 Msun Mass Mass 15- 20 F6.4 Msun E_Mass Upper uncertainty in Mass 22- 27 F6.4 Msun e_Mass Lower uncertainty in Mass 29- 34 F6.4 Rsun Rad Radius 36- 41 F6.4 Rsun E_Rad Upper uncertainty in Rad 43- 48 F6.4 Rsun e_Rad Lower uncertainty in Rad 50- 55 F6.4 Gyr Age Age 57- 62 F6.4 Gyr E_Age Upper uncertainty in Age 64- 69 F6.4 Gyr e_Age Lower uncertainty in Age 71- 76 F6.4 Lsun Lum Luminosity 78- 84 F7.4 Lsun E_Lum ?=-9.9999 Upper uncertainty in Lum 86- 92 F7.4 Lsun e_Lum ?=-9.9999 Lower uncertainty in Lum 94-101 F8.6 g/cm3 Den Density 103-111 F9.6 g/cm3 E_Den ?=-9.9999 Upper uncertainty in Den 113-121 F9.6 g/cm3 e_Den ?=-9.9999 Lower uncertainty in Den 123-129 F7.4 --- Ysup ?=-9.9999 Fractional surface helium abundance 131-137 F7.4 --- E_Ysup ?=-9.9999 Upper uncertainty in Ysup 139-145 F7.4 --- e_Ysup ?=-9.9999 Lower uncertainty in Ysup 147-153 F7.4 Rsun RBCZ ?=-9.9999 Radius of base of the convective envelope 155-161 F7.4 Rsun E_RBCZ ?=-9.9999 Upper uncertainty in RBCV 163-169 F7.4 Rsun e_RBCZ ?=-9.9999 Lower uncertainty in RBCV -------------------------------------------------------------------------------- Note (1): Pipeline abbreviations as follows: AIMS = The "Asteroseimic Inference on a Massive Scale" (AIMS) pipeline - http://bison.ph.bham.ac.uk/spaceinn/aims/; see Appendix A ASTFIT = The "ASTEC FITting" method uses the ASTEC evolutionary code (Christensen-Dalsgaard 2008Ap&SS.316...13C 2008Ap&SS.316...13C) coupled with ADIPLS (Christensen-Dalsgaard 2008Ap&SS.316..113C 2008Ap&SS.316..113C) for computation of theoretical pulsation frequencies in a grid of stellar models. BASTA = The "BAyesian STellar Algorithm" uses precomputed grids of evolutionary models and performs a global search for the optimal solution using the Bayesian approach described by Silva Aguirre+ (2015, J/MNRAS/452/2127). C2kSMO = The "Cesam2k Stellar Model Optimization" pipeline (C2kSMO) uses the Cesam2k evolutionary code coupled to the Liege Oscillations Code and the procedures described by Lebreton & Goupil (2014, J/A+A/569/A21). GOE = The setting of the "GOEttingen" pipeline is very similar to that described by Appourchaux+ (2015A&A...582A..25A 2015A&A...582A..25A) and Reese+ (2016A&A...592A..14R 2016A&A...592A..14R). Since more massive stars are included in the LEGACY sample, the Ledoux (1947ApJ...105..305L 1947ApJ...105..305L) criterion for convection was used with an extra free parameter for the convective overshooting described according to the exponential model of Freytag+ (1996A&A...313..497F 1996A&A...313..497F). V&A = This approach uses a combination of the MESA and ADIPLS codes to compute evolutionary models and pulsation frequencies with the same input physics as listed in Table 3 of Appourchaux+ (2015A&A...582A..25A 2015A&A...582A..25A). YMCM = The "Yale Monte Carlo Method" is applied as described by Silva Aguirre+ (2015, J/MNRAS/452/2127), with the exceptions of a variable value of the mixing-length parameter and the use of the Ball & Gizon (2014A&A...568A.123B 2014A&A...568A.123B) formulation to correct for surface effects. See section 3 for further explanations. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 I8 --- KIC Kepler Input Catalog Identifier 10- 15 F6.1 uHz numax [884/4198] Frequency of maximum power 17- 20 F4.1 uHz E_numax Upper confidence interval of numax 22- 25 F4.1 uHz e_numax Lower confidence interval of numax 27- 33 F7.3 uHz [48.4/173.6] Average large frequency separation 35- 39 F5.3 uHz E_ Upper confidence interval of 41- 45 F5.3 uHz e_ Lower confidence interval of 47- 50 I4 K Teff [5180/6642] Effective temperature 52- 54 I3 K e_Teff Uncertainty in Teff 56- 60 F5.2 [Sun] [Fe/H] [-1/0.4] Metallicity 62- 65 F4.2 [Sun] e_[Fe/H] Uncertainty in [Fe/H] 67 I1 --- Ref Source of atmospheric parameters (1) -------------------------------------------------------------------------------- Note (1): Reference as follows: 1 = Buchhave & Latham (2015, J/ApJ/808/187); 2 = Pinsonneault et al. (2012, J/ApJS/199/30); 3 = Pinsonneault et al. (2014, J/ApJS/215/19); 4 = Casagrande et al. (2014, J/ApJ/787/110); 5 = Ramirez et al. (2009, J/A+A/508/L17); 6 = Chaplin et al. (2014, J/ApJS/210/1); 7 = Huber et al. (2013, J/ApJ/767/127). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Pipe Pipeline identifier 8- 15 I8 --- KIC Kepler Input Catalog Identifier 17- 22 F6.4 Msun Mass [0.7/1.9] Mass 24- 29 F6.4 Msun E_Mass Positive uncertainty in Mass 31- 37 F7.4 Msun e_Mass Negative uncertainty in Mass 39- 44 F6.4 Rsun Rad [0.7/2.4] Radius 46- 51 F6.4 Rsun E_Rad Positive uncertainty in Rad 53- 59 F7.4 Rsun e_Rad Negative uncertainty in Rad 61- 66 F6.4 [cm/s2] log(g) [3.9/4.6] Log surface gravity 68- 73 F6.4 [cm/s2] E_log(g) Positive uncertainty in log(g) 75- 81 F7.4 [cm/s2] e_log(g) Negative uncertainty in log(g) 83- 89 F7.4 Gyr Age [0.2/13] Age 91- 96 F6.4 Gyr E_Age Positive uncertainty in Age 98-104 F7.4 Gyr e_Age Negative uncertainty in Age 106-112 F7.4 Lsun Lum [0.03/9.8] Luminosity 114-120 F7.4 Lsun E_Lum ?=-9.9999 Positive uncertainty in Lum 122-128 F7.4 Lsun e_Lum ?=-9.9999 Negative uncertainty in Lum 130-137 F8.6 g/cm3 rho [0.1/2.4] Density 139-147 F9.6 g/cm3 E_rho ?=9.9999 Positive uncertainty in rho 149-157 F9.6 g/cm3 e_rho ?=9.9999 Negative uncertainty in rho 159-164 F6.2 pc Dist [20/430] Distance 166-170 F5.2 pc E_Dist Positive uncertainty in Dist 172-177 F6.2 pc e_Dist Negative uncertainty in Dist 179-184 F6.4 --- Xini [0.4/0.9] Fractional initial hydrogen abundance 186-192 F7.4 --- E_Xini ?=-9.9999 Positive uncertainty in Xini 194-200 F7.4 --- e_Xini ?=-9.9999 Negative uncertainty in Xini 202-207 F6.4 --- Yini [0.1/0.6] Fractional initial helium abundance 209-215 F7.4 --- E_Yini ?=-9.9999 Positive uncertainty in Yini 217-223 F7.4 --- e_Yini ?=-9.9999 Negative uncertainty in Yini 225-230 F6.4 --- Xsup [0.5/0.9] Fractional surface hydrogen abundance 232-238 F7.4 --- E_Xsup ?=-9.9999 Positive uncertainty in Xsup 240-246 F7.4 --- e_Xsup ?=-9.9999 Negative uncertainty in Xsup 248-253 F6.4 --- Ysup [0.1/0.5] Fractional surface helium abundance 255-261 F7.4 --- E_Ysup ?=-9.9999 Positive uncertainty in Ysup 263-269 F7.4 --- e_Ysup ?=-9.9999 Negative uncertainty in Ysup 271-277 F7.4 --- Xcen [0/0.8]?=-9.9999 Fractional central hydrogen abundance 279-285 F7.4 --- E_Xcen ?=-9.9999 Positive uncertainty in Xcen 287-293 F7.4 --- e_Xcen ?=-9.9999 Negative uncertainty in Xcen 295-301 F7.4 --- Ycen [0.2/1]?=-9.9999 Fractional central helium abundance 303-309 F7.4 --- E_Ycen ?=-9.9999 Positive uncertainty in Ycen 311-317 F7.4 --- e_Ycen ?=-9.9999 Negative uncertainty in Ycen 319-325 F7.4 --- MCcore [0/0.2]?=-9.9999 Mass coordinate of convective core edge 327-333 F7.4 --- E_MCcore ?=-9.9999 Positive uncertainty in MCcore 335-341 F7.4 --- e_MCcore ?=-9.9999 Negative uncertainty in MCcore 343-349 F7.4 --- Rbce [0.008/1]?=-9.9999 Radius coordinate of base of convective envelope 351-357 F7.4 --- E_Rbce ?=-9.9999 Positive uncertainty in Rbce 359-365 F7.4 --- e_Rbce ?=-9.9999 Negative uncertainty in Rbce 367-372 F6.4 --- alpha [0.3/2.3] Convective efficiency 374-380 F7.4 --- E_alpha ?=-9.9999 Positive uncertainty in alpha 382-388 F7.4 --- e_alpha ?=-9.9999 Negative uncertainty in alpha 390-396 F7.4 --- TAMS [1.2/22.2]?=-9.9999 Terminal age main sequence (1) -------------------------------------------------------------------------------- Note (1): A more physically motivated scale to compare the age uncertainty distributions is given by the Terminal Age Main Sequence (TAMS), which we define as the point where the remaining central hydrogen content in a stellar model reaches 1x10-5. See section 4.1. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Lund et al. Paper I. 2017ApJ...835..172L 2017ApJ...835..172L Cat. J/ApJ/835/172
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 28-Aug-2017
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line