J/ApJ/835/173 Kepler asteroseismic LEGACY sample. II. (Silva Aguirre+, 2017)
Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY sample.
II. Radii, masses, and ages.
Silva Aguirre V., Lund M.N., Antia H.M., Ball W.H., Basu S.,
Christensen-Dalsgaard J., Lebreton Y., Reese D.R., Verma K., Casagrande L.,
Justesen A.B., Mosumgaard J.R., Chaplin W.J., Bedding T.R., Davies G.R.,
Handberg R., Houdek G., Huber D., Kjeldsen H., Latham D.W., White T.R.,
Coelho H.R., Miglio A., Rendle B.
<Astrophys. J., 835, 173-173 (2017)>
=2017ApJ...835..173S 2017ApJ...835..173S (SIMBAD/NED BibCode)
ADC_Keywords: Stars, masses ; Stars, ages ; Stars, diameters ;
Stars, distances ; Abundances
Keywords: asteroseismology; stars: fundamental parameters; stars: oscillations
Abstract:
We use asteroseismic data from the Kepler satellite to determine
fundamental stellar properties of the 66 main-sequence targets
observed for at least one full year by the mission. We distributed
tens of individual oscillation frequencies extracted from the time
series of each star among seven modeling teams who applied different
methods to determine radii, masses, and ages for all stars in the
sample. Comparisons among the different results reveal a good level of
agreement in all stellar properties, which is remarkable considering
the variety of codes, input physics, and analysis methods employed by
the different teams. Average uncertainties are of the order of ∼2% in
radius, ∼4% in mass, and ∼10% in age, making this the
best-characterized sample of main-sequence stars available to date.
Our predicted initial abundances and mixing-length parameters are
checked against inferences from chemical enrichment laws
ΔY/ΔZ and predictions from 3D atmospheric simulations. We
test the accuracy of the determined stellar properties by comparing
them to the Sun, angular diameter measurements, Gaia parallaxes, and
binary evolution, finding excellent agreement in all cases and further
confirming the robustness of asteroseismically determined physical
parameters of stars when individual frequencies of oscillation are
available. Baptised as the Kepler dwarfs LEGACY sample, these stars
are the solar-like oscillators with the best asteroseismic properties
available for at least another decade. All data used in this analysis
and the resulting stellar parameters are made publicly available for
the community.
Description:
The 66 stars comprising the LEGACY sample were chosen from more than
500 main-sequence and subgiant targets in which Kepler detected
oscillations (Chaplin+ 2014, J/ApJS/210/1). We selected all targets
that had more than one year of short-cadence observations, and where
inspection of the power spectrum did not reveal any clear signature of
bumped l=1 modes.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 169 7 Solar properties determined from each pipeline
table3.dat 67 66 Global asteroseismic and atmospheric properties
of our sample
table4.dat 396 396 Stellar properties for the LEGACY dwarfs sample
determined by each pipeline
--------------------------------------------------------------------------------
See also:
I/121 : Common proper motions stars in AGK3 (Halbwachs, 1986)
V/133 : Kepler Input Catalog (Kepler Mission Team, 2009)
J/A+A/275/101 : Chemical evolution of the galactic disk I. (Edvardsson+ 1993)
J/A+A/329/943 : F + G solar neighbourhood stars new ages (Ng+ 1998)
J/ApJS/168/297 : Stellar parameters of nearby cool stars (Takeda+, 2007)
J/A+A/508/L17 : Abundances in solar analogs (Ramirez+, 2009)
J/A+A/512/A54 : Teff and Fbol from Infrared Flux Method (Casagrande+, 2010)
J/ApJ/749/152 : Asteroseismic analysis of 22 solar-type stars (Mathur+, 2012)
J/MNRAS/423/122 : Abundances of 93 solar-type Kepler targets (Bruntt+, 2012)
J/MNRAS/427/343 : Infrared excesses of Hipparcos stars (McDonald+, 2012)
J/ApJS/199/30 : Effective temperature scale for KIC stars (Pinsonneault+, 2012
J/ApJ/767/127 : Asteroseismic solutions for 77 Kepler stars (Huber+, 2013)
J/ApJS/210/1 : Asteroseismic study of solar-type stars (Chaplin+, 2014)
J/ApJ/787/110 : SAGA: Stromgren survey of seismic KIC stars (Casagrande+, 2014
J/ApJS/215/19 : APOKASC catalog of Kepler red giants (Pinsonneault+, 2014)
J/A+A/573/A89 : STAGGER-grid of 3D stellar models. III. (Magic+, 2015)
J/MNRAS/447/2714 : Flare stars across the H-R diagram (Balona+, 2015)
J/ApJ/808/187 : Metallicities of KIC stars without planets (Buchhave+, 2015)
J/MNRAS/452/2127 : Fundamental param. of Kepler stars (Silva Aguirre+, 2015)
J/A+A/585/A5 : Exoplanet hosts/field stars age consistency (Bonfanti+, 2016)
J/ApJ/831/L6 : Eclipsing binary parallaxes with Gaia data (Stassun+, 2016)
J/ApJ/835/172 : Kepler asteroseismic LEGACY sample. I. (Lund+, 2017)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Pipe Pipeline identifier (1)
8- 13 F6.4 Msun Mass Mass
15- 20 F6.4 Msun E_Mass Upper uncertainty in Mass
22- 27 F6.4 Msun e_Mass Lower uncertainty in Mass
29- 34 F6.4 Rsun Rad Radius
36- 41 F6.4 Rsun E_Rad Upper uncertainty in Rad
43- 48 F6.4 Rsun e_Rad Lower uncertainty in Rad
50- 55 F6.4 Gyr Age Age
57- 62 F6.4 Gyr E_Age Upper uncertainty in Age
64- 69 F6.4 Gyr e_Age Lower uncertainty in Age
71- 76 F6.4 Lsun Lum Luminosity
78- 84 F7.4 Lsun E_Lum ?=-9.9999 Upper uncertainty in Lum
86- 92 F7.4 Lsun e_Lum ?=-9.9999 Lower uncertainty in Lum
94-101 F8.6 g/cm3 Den Density
103-111 F9.6 g/cm3 E_Den ?=-9.9999 Upper uncertainty in Den
113-121 F9.6 g/cm3 e_Den ?=-9.9999 Lower uncertainty in Den
123-129 F7.4 --- Ysup ?=-9.9999 Fractional surface helium
abundance
131-137 F7.4 --- E_Ysup ?=-9.9999 Upper uncertainty in Ysup
139-145 F7.4 --- e_Ysup ?=-9.9999 Lower uncertainty in Ysup
147-153 F7.4 Rsun RBCZ ?=-9.9999 Radius of base of the convective
envelope
155-161 F7.4 Rsun E_RBCZ ?=-9.9999 Upper uncertainty in RBCV
163-169 F7.4 Rsun e_RBCZ ?=-9.9999 Lower uncertainty in RBCV
--------------------------------------------------------------------------------
Note (1): Pipeline abbreviations as follows:
AIMS = The "Asteroseimic Inference on a Massive Scale" (AIMS) pipeline -
http://bison.ph.bham.ac.uk/spaceinn/aims/; see Appendix A
ASTFIT = The "ASTEC FITting" method uses the ASTEC evolutionary code
(Christensen-Dalsgaard 2008Ap&SS.316...13C 2008Ap&SS.316...13C) coupled with
ADIPLS (Christensen-Dalsgaard 2008Ap&SS.316..113C 2008Ap&SS.316..113C) for computation
of theoretical pulsation frequencies in a grid of stellar models.
BASTA = The "BAyesian STellar Algorithm" uses precomputed grids of
evolutionary models and performs a global search for the optimal
solution using the Bayesian approach described by
Silva Aguirre+ (2015, J/MNRAS/452/2127).
C2kSMO = The "Cesam2k Stellar Model Optimization" pipeline (C2kSMO) uses the
Cesam2k evolutionary code coupled to the Liege Oscillations Code and
the procedures described by Lebreton & Goupil (2014, J/A+A/569/A21).
GOE = The setting of the "GOEttingen" pipeline is very similar to that
described by Appourchaux+ (2015A&A...582A..25A 2015A&A...582A..25A) and
Reese+ (2016A&A...592A..14R 2016A&A...592A..14R). Since more massive stars are included
in the LEGACY sample, the Ledoux (1947ApJ...105..305L 1947ApJ...105..305L) criterion for
convection was used with an extra free parameter for the convective
overshooting described according to the exponential model of
Freytag+ (1996A&A...313..497F 1996A&A...313..497F).
V&A = This approach uses a combination of the MESA and ADIPLS codes to
compute evolutionary models and pulsation frequencies with the same
input physics as listed in Table 3 of
Appourchaux+ (2015A&A...582A..25A 2015A&A...582A..25A).
YMCM = The "Yale Monte Carlo Method" is applied as described by
Silva Aguirre+ (2015, J/MNRAS/452/2127), with the exceptions of a
variable value of the mixing-length parameter and the use of the
Ball & Gizon (2014A&A...568A.123B 2014A&A...568A.123B) formulation to correct for
surface effects.
See section 3 for further explanations.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Kepler Input Catalog Identifier
10- 15 F6.1 uHz numax [884/4198] Frequency of maximum power
17- 20 F4.1 uHz E_numax Upper confidence interval of numax
22- 25 F4.1 uHz e_numax Lower confidence interval of numax
27- 33 F7.3 uHz [48.4/173.6] Average large frequency separation
35- 39 F5.3 uHz E_ Upper confidence interval of
41- 45 F5.3 uHz e_ Lower confidence interval of
47- 50 I4 K Teff [5180/6642] Effective temperature
52- 54 I3 K e_Teff Uncertainty in Teff
56- 60 F5.2 [Sun] [Fe/H] [-1/0.4] Metallicity
62- 65 F4.2 [Sun] e_[Fe/H] Uncertainty in [Fe/H]
67 I1 --- Ref Source of atmospheric parameters (1)
--------------------------------------------------------------------------------
Note (1): Reference as follows:
1 = Buchhave & Latham (2015, J/ApJ/808/187);
2 = Pinsonneault et al. (2012, J/ApJS/199/30);
3 = Pinsonneault et al. (2014, J/ApJS/215/19);
4 = Casagrande et al. (2014, J/ApJ/787/110);
5 = Ramirez et al. (2009, J/A+A/508/L17);
6 = Chaplin et al. (2014, J/ApJS/210/1);
7 = Huber et al. (2013, J/ApJ/767/127).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Pipe Pipeline identifier
8- 15 I8 --- KIC Kepler Input Catalog Identifier
17- 22 F6.4 Msun Mass [0.7/1.9] Mass
24- 29 F6.4 Msun E_Mass Positive uncertainty in Mass
31- 37 F7.4 Msun e_Mass Negative uncertainty in Mass
39- 44 F6.4 Rsun Rad [0.7/2.4] Radius
46- 51 F6.4 Rsun E_Rad Positive uncertainty in Rad
53- 59 F7.4 Rsun e_Rad Negative uncertainty in Rad
61- 66 F6.4 [cm/s2] log(g) [3.9/4.6] Log surface gravity
68- 73 F6.4 [cm/s2] E_log(g) Positive uncertainty in log(g)
75- 81 F7.4 [cm/s2] e_log(g) Negative uncertainty in log(g)
83- 89 F7.4 Gyr Age [0.2/13] Age
91- 96 F6.4 Gyr E_Age Positive uncertainty in Age
98-104 F7.4 Gyr e_Age Negative uncertainty in Age
106-112 F7.4 Lsun Lum [0.03/9.8] Luminosity
114-120 F7.4 Lsun E_Lum ?=-9.9999 Positive uncertainty in Lum
122-128 F7.4 Lsun e_Lum ?=-9.9999 Negative uncertainty in Lum
130-137 F8.6 g/cm3 rho [0.1/2.4] Density
139-147 F9.6 g/cm3 E_rho ?=9.9999 Positive uncertainty in rho
149-157 F9.6 g/cm3 e_rho ?=9.9999 Negative uncertainty in rho
159-164 F6.2 pc Dist [20/430] Distance
166-170 F5.2 pc E_Dist Positive uncertainty in Dist
172-177 F6.2 pc e_Dist Negative uncertainty in Dist
179-184 F6.4 --- Xini [0.4/0.9] Fractional initial hydrogen abundance
186-192 F7.4 --- E_Xini ?=-9.9999 Positive uncertainty in Xini
194-200 F7.4 --- e_Xini ?=-9.9999 Negative uncertainty in Xini
202-207 F6.4 --- Yini [0.1/0.6] Fractional initial helium abundance
209-215 F7.4 --- E_Yini ?=-9.9999 Positive uncertainty in Yini
217-223 F7.4 --- e_Yini ?=-9.9999 Negative uncertainty in Yini
225-230 F6.4 --- Xsup [0.5/0.9] Fractional surface hydrogen abundance
232-238 F7.4 --- E_Xsup ?=-9.9999 Positive uncertainty in Xsup
240-246 F7.4 --- e_Xsup ?=-9.9999 Negative uncertainty in Xsup
248-253 F6.4 --- Ysup [0.1/0.5] Fractional surface helium abundance
255-261 F7.4 --- E_Ysup ?=-9.9999 Positive uncertainty in Ysup
263-269 F7.4 --- e_Ysup ?=-9.9999 Negative uncertainty in Ysup
271-277 F7.4 --- Xcen [0/0.8]?=-9.9999 Fractional central hydrogen
abundance
279-285 F7.4 --- E_Xcen ?=-9.9999 Positive uncertainty in Xcen
287-293 F7.4 --- e_Xcen ?=-9.9999 Negative uncertainty in Xcen
295-301 F7.4 --- Ycen [0.2/1]?=-9.9999 Fractional central helium
abundance
303-309 F7.4 --- E_Ycen ?=-9.9999 Positive uncertainty in Ycen
311-317 F7.4 --- e_Ycen ?=-9.9999 Negative uncertainty in Ycen
319-325 F7.4 --- MCcore [0/0.2]?=-9.9999 Mass coordinate of convective
core edge
327-333 F7.4 --- E_MCcore ?=-9.9999 Positive uncertainty in MCcore
335-341 F7.4 --- e_MCcore ?=-9.9999 Negative uncertainty in MCcore
343-349 F7.4 --- Rbce [0.008/1]?=-9.9999 Radius coordinate of base of
convective envelope
351-357 F7.4 --- E_Rbce ?=-9.9999 Positive uncertainty in Rbce
359-365 F7.4 --- e_Rbce ?=-9.9999 Negative uncertainty in Rbce
367-372 F6.4 --- alpha [0.3/2.3] Convective efficiency
374-380 F7.4 --- E_alpha ?=-9.9999 Positive uncertainty in alpha
382-388 F7.4 --- e_alpha ?=-9.9999 Negative uncertainty in alpha
390-396 F7.4 --- TAMS [1.2/22.2]?=-9.9999 Terminal age main sequence
(1)
--------------------------------------------------------------------------------
Note (1): A more physically motivated scale to compare the age uncertainty
distributions is given by the Terminal Age Main Sequence (TAMS),
which we define as the point where the remaining central hydrogen
content in a stellar model reaches 1x10-5.
See section 4.1.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Lund et al. Paper I. 2017ApJ...835..172L 2017ApJ...835..172L Cat. J/ApJ/835/172
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 28-Aug-2017