J/ApJ/855/63 Yields of Fe and Zn for different types of SNe (Hirai+, 2018)
Enrichment of Zinc in galactic chemodynamical evolution models.
Hirai Y., Saitoh T.R., Ishimaru Y., Wanajo S.
<Astrophys. J., 855, 63 (2018)>
=2018ApJ...855...63H 2018ApJ...855...63H
ADC_Keywords: Models, evolutionary; Supernovae; Abundances
Keywords: galaxies: abundances ; galaxies: dwarf ; galaxies: evolution ;
galaxies: formation ; methods: numerical ; stars: abundances
Abstract:
The heaviest iron-peak element Zinc (Zn) has been used as an important
tracer of cosmic chemical evolution. Spectroscopic observations of the
metal-poor stars in Local Group galaxies show an increasing trend of
[Zn/Fe] ratios toward lower metallicity. However, the enrichment of Zn
in galaxies is not well understood due to poor knowledge of
astrophysical sites of Zn, as well as metal mixing in galaxies. Here
we show possible explanations for the observed trend by taking into
account electron-capture supernovae (ECSNe) as one of the sources of
Zn in our chemodynamical simulations of dwarf galaxies. We find that
the ejecta from ECSNe contribute to stars with [Zn/Fe]≳0.5. We also
find that scatters of [Zn/Fe] in higher metallicities originate from
the ejecta of type Ia supernovae. On the other hand, it appears
difficult to explain the observed trends if we do not consider ECSNe
as a source of Zn. These results come from an inhomogeneous spatial
metallicity distribution due to the inefficiency of the metal mixing.
We find that the optimal value of the scaling factor for the metal
diffusion coefficient is ∼0.01 in the shear- based metal mixing model
in smoothed particle hydrodynamics simulations. These results suggest
that ECSNe could be one of the contributors of the enrichment of Zn in
galaxies.
Description:
The N-body/smoothed particle hydrodynamics (SPH) code ASURA (Saitoh+
2008PASJ...60..667S 2008PASJ...60..667S ; 2009PASJ...61..481S 2009PASJ...61..481S) was adopted in this study.
Gravity is calculated using the Tree method (Barnes & Hut
1986Natur.324..446B 1986Natur.324..446B). We adopt a density-independent formulation of
SPH (DISPH) to compute hydrodynamics (Saitoh & Makino 2013ApJ...768...44S 2013ApJ...768...44S).
See section 2 for further explanations.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 33 6 The mass ranges of electron-capture supernova
(ECSN) progenitors
table2.dat 127 8 *Yields of Fe and Zn of each type of SN
--------------------------------------------------------------------------------
Note on table2.dat: Yield data are compiled by CELib, Saitoh
(2017AJ....153...85S 2017AJ....153...85S, 2016ascl.soft12016S).
--------------------------------------------------------------------------------
See also:
J/A+A/416/1117 : Abundances in the early Galaxy (Cayrel+, 2004)
J/ApJ/608/405 : Explosive yields of massive star (Chieffi+, 2004)
J/A+A/415/993 : FeII, ZNI and SI abundances on halo stars (Nissen+, 2004)
J/A+A/465/815 : Abundances of Sgr dSph stars (Sbordone+, 2007)
J/ApJ/701/1053 : Abundances of 8 stars in the Draco dSph (Cohen+, 2009)
J/ApJ/705/328 : Abundance measurements in Sculptor dSph (Kirby+, 2009)
J/ApJ/719/931 : Chemical evolution of the UMi dSph (Cohen+, 2010)
J/ApJ/708/560 : Spectroscopy of UMa II and Coma Ber (Frebel+, 2010)
J/ApJS/191/352 : Abundances in stars of MW dwarf satellites (Kirby+, 2010)
J/MNRAS/412/843 : SAGA extremely metal-poor stars (Suda+, 2011)
J/A+A/530/A33 : DLA depletion estimates (Vladilo+, 2011)
J/A+A/544/A73 : BVI photometry of Fornax dSph galaxy (de Boer+, 2012)
J/AJ/144/168 : Spectroscopy of Scl 1019417 and UMi 20103 (Kirby+, 2012)
J/ApJS/199/38 : Presupernova evolution (Limongi+, 2012)
J/AJ/144/4 : Dwarf galaxies in the Local Group (McConnachie+, 2012)
J/ApJ/751/102 : Equivalent widths of 9 RGB in Carina dSph (Venn+, 2012)
J/ApJ/763/61 : Abundances of 7 red giant members of BootesI (Gilmore+, 2013)
J/ApJ/779/102 : Metallicities of RGB stars in dwarf galaxies (Kirby+, 2013)
J/ApJ/786/74 : EW measurements of 6 Segue 1 red giants (Frebel+, 2014)
J/ApJ/802/93 : Abundance analysis of 5 stars in Sculptor (Simon+, 2015)
J/A+A/574/A129 : The First CEMP star in the Sculptor dSph (Skuladottir+, 2015)
J/ApJ/830/93 : Abundances of Ret II brightest red giant members (Ji+, 2016)
J/A+A/604/A128 : S abundances for 1301 stars from GES (Duffau+, 2017)
J/A+A/608/A46 : Constraining cosmic scatter (Reggiani+, 2017)
J/A+A/606/A71 : dSph RGB abundance and velocities (Skuladottir+, 2017)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 F7.5 --- Metal [1e-05/0.02] Metallicity
9- 11 F3.1 Msun D15L [8.2/9.8] Lower Mass of ECSN progenitors
in Doherty+(2015MNRAS.446.2599D 2015MNRAS.446.2599D)
13- 15 F3.1 Msun D15U [8.4/9.9] Upper Mass of ECSN progenitors
in Doherty+ (2015MNRAS.446.2599D 2015MNRAS.446.2599D)
17- 19 F3.1 Msun P07L [6.4/9] Lower Mass of ECSN progenitors
in Poelarends (2007PhDT.......212P 2007PhDT.......212P)
21- 23 F3.1 Msun P07U [8.2/9.3] Upper Mass of ECSN progenitors
in Poelarends (2007PhDT.......212P 2007PhDT.......212P)
25- 27 F3.1 Msun CL [8.5] Lower Mass of ECSN progenitors
in the constant mass model (1)
29- 33 F5.3 Msun CU [9] Upper Mass of ECSN progenitors
in the constant mass model (1)
--------------------------------------------------------------------------------
Note (1): The constant mass model adopts 8.5 to 9.0Msun in all metallicity.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 A2 --- El Names of elements
4- 8 F5.3 --- Metal [0/0.02] Metallicity
10- 19 E10.5 Msun e8.8 [0.001/0.0031] Yields of electron-capture SNe (1)
21- 31 E11.6 Msun SN15 [/0.073] Yields of core-collapse SNe of 15Msun (2)
33- 43 E11.6 Msun SN20 [/0.073] Yields of core-collapse SNe of 20Msun (2)
45- 55 E11.6 Msun SN25 [/0.074] Yields of core-collapse SNe of 25Msun (2)
57- 67 E11.6 Msun SN30 [/0.075] Yields of core-collapse SNe of 30Msun (2)
69- 79 E11.6 Msun SN40 [/0.081] Yields of core-collapse SNe of 40Msun (2)
81- 91 E11.6 Msun HN20 [/0.085] Yields of hypernovae of 20Msun (2)
93-103 F11.9 Msun HN25 [0.00026/0.16] Yields of hypernovae of 25Msun (2)
105-115 F11.9 Msun HN30 [0.00013/0.21] Yields of hypernovae of 30Msun (2)
117-127 F11.9 Msun HN40 [0.00069/0.28] Yields of hypernovae of 40Msun (2)
--------------------------------------------------------------------------------
Note (1): Nucleosynthesis yields for electron-capture supernovae taken from
Wanajo+ (2018ApJ...852...40W 2018ApJ...852...40W).
Note (2): Nucleosynthesis yields for core-collapse supernovae and hypernovae
taken from Nomoto+ (2013ARA&A..51..457N 2013ARA&A..51..457N).
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 02-Jan-2019