J/ApJ/856/6 SEAMBHs IX. 10 new Hβ light curves (Du+, 2018)
Supermassive black holes with high accretion rates in active galactic nuclei.
IX. 10 new observations of reverberation mapping and shortened Hβ lags.
Du Pu, Zhang Z.-X., Wang K., Huang Y.-K., Zhang Y., Lu K.-X., Hu C.,
Li Y.-R., Bai J.-M., Bian W.-H., Yuan Y.-F., Ho L.C., Wang J.-M.
<Astrophys. J., 856, 6 (2018)>
=2018ApJ...856....6D 2018ApJ...856....6D
ADC_Keywords: Active gal. nuclei; Accretion; Spectroscopy; Photometry, SDSS;
Black holes
Keywords: accretion, accretion disks ; galaxies: active ; galaxies: nuclei ;
quasars: supermassive black holes
Abstract:
As one paper in a series reporting on a large reverberation mapping
campaign of super-Eddington accreting massive black holes (SEAMBHs) in
active galactic nuclei (AGNs), we present the results of 10 SEAMBHs
monitored spectroscopically during 2015-2017. Six of them are observed
for the first time, and have generally higher 5100Å luminosities
than the SEAMBHs monitored in our campaign from 2012 to 2015; the
remaining four are repeat observations to check if their previous lags
change. Similar to the previous SEAMBHs, the Hβ time lags of the
newly observed objects are shorter than the values predicted by the
canonical RHβ-L5100 relation of sub-Eddington AGNs, by factors of
∼2-6, depending on the accretion rate. The four previously observed
objects have lags consistent with previous measurements. We provide
linear regressions for the RHβ-L5100 relation, solely for the
SEAMBH sample and for low-accretion AGNs. We find that the relative
strength of Fe ii and the profile of the Hβ emission line can be
used as proxies of accretion rate, showing that the shortening of
Hβ lags depends on accretion rates. The recent SDSS-RM discovery
of shortened Hβ lags in AGNs with low accretion rates provides
compelling evidence for retrograde accretion onto the black hole.
These evidences show that the canonical RHβ-L5100 relation holds
only in AGNs with moderate accretion rates. At low accretion rates, it
should be revised to include the effects of black hole spin, whereas
the accretion rate itself becomes a key factor in the regime of high
accretion rates.
Description:
The details of the target selection, telescope, instrument,
observation, and data reduction of the SEAMBH2015-2016 campaign are,
with only minor exceptions, almost the same as those for the
observations in 2013 October-2015 June (hereafter SEAMBH2013-2014,
Papers IV (Du+, 2015, J/ApJ/806/22) and V (Du+, 2016, J/ApJ/825/126).
The photometric and spectroscopic data used in this work were taken
with the Lijiang 2.4m telescope at the Yunnan Observatories of the
Chinese Academy of Sciences. The images were taken using the SDSS r'
filter. For spectroscopy, we used Grism 3, which has a wavelength
coverage of 3800-9000Å.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 93 10 The sample of SEAMBH2015-2017 (SEAMBHs:
super-Eddington accreting massive black holes)
table3.dat 79 627 Light curves
table6.dat 109 10 Results of Hb reverberation mapping of the SEAMBHs
in 2015-2017
--------------------------------------------------------------------------------
See also:
J/ApJ/613/682 : AGN masses & broad-line region sizes (Peterson+, 2004)
J/ApJ/687/78 : FeII emission in quasars (Hu+, 2008)
J/ApJ/683/L115 : Intermediate-line region in quasars (Hu+, 2008)
J/ApJ/736/86 : FeII emission in SDSS type 1 AGNs (Dong+, 2011)
J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011)
J/ApJ/755/60 : Reverberation mapping for 5 Seyfert 1 galaxies (Grier+, 2012)
J/MNRAS/431/836 : Type 1 AGN at low z. III. (Stern+, 2013)
J/ApJ/782/45 : SEAMBHs. I. Mrk 142, Mrk 335, & IRAS F12397+3333 (Du+, 2014)
J/ApJ/788/159 : 17 Seyfert 1 galaxies light curves (Koshida+, 2014)
J/ApJ/793/108 : SEAMBHs. II. Continuum and Hbeta LCs (Wang+, 2014)
J/ApJS/217/26 : Lick AGN monitoring 2011: light curves (Barth+, 2015)
J/ApJ/806/22 : SEAMBHs IV. Hβ time lags (Du+, 2015)
J/ApJS/216/4 : SDSS-RM project: technical overview (Shen+, 2015)
J/ApJ/825/126 : SEAMBHs. V. The third year (Du+, 2016)
J/ApJ/818/L14 : RM AGNs accretion rates and BH masses (Du+, 2016)
J/ApJ/827/118 : A new reverberation mapping campaign on NGC 5548 (Lu+, 2016)
J/ApJ/818/30 : Lag measurements for 15 z<0.8 QSOs from SDSS-RM (Shen+, 2016)
J/ApJ/840/97 : Optical RM campaign of 5 AGNs (Fausnaugh+, 2017)
J/ApJ/851/21 : SDSS RM project first year of observations (Grier+, 2017)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- SDSS SDSS name (JHHMMSS.ss+DDMMSS.s)
26- 27 I2 h RAh [7/10] Hour of right ascension (J2000)
29- 30 I2 min RAm Minute of right ascension (J2000)
32- 36 F5.2 s RAs Second of right ascension (J2000)
38 A1 --- DE- [+] Sign of declination (J2000)
39- 40 I2 deg DEd [5/47] Degree of declination (J2000)
42- 43 I2 arcmin DEm Arcminute of declination (J2000)
45- 48 F4.1 arcsec DEs Arcsecond of declination (J2000)
50- 55 F6.4 --- z [0.12/0.41] Redshift
57- 73 A17 --- Dates Monitoring period (UT dates)
75- 76 I2 --- Nsp [24/89] Number of spectroscopic epochs
78- 80 F3.1 d Cad Cadence; average sampling interval of the objects
82- 86 F5.1 arcsec R* [57/211] Angular distance between the object and
the comparison star
88- 93 F6.1 deg PA [-157/139] Position angle of the comparison star
from the object
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- SDSS SDSS name (JHHMMSS.ss+DDMMSS.s)
26- 32 F7.3 d JDphot [20.3/622.1] Julian Date of photometry;
JD-2457300
34- 39 F6.3 mag rmag [15.2/17.8] SDSS r' filter magnitude
41- 45 F5.3 mag e_rmag [0.001/0.05] Uncertainty in rmag
47- 53 F7.3 d JDspec [22.2/622.1]? Julian Date of
spectroscopy; JD-2457300
55- 60 F6.3 10-18W/m2/nm F5100 [1.5/18.3]? Continuum flux at 5100Å (2)
62- 66 F5.3 10-18W/m2/nm e_F5100 [0.006/0.4]? Uncertainty in F5100
68- 73 F6.3 10-17W/m2 FHb [0.9/13]? Hβ line flux (3)
75- 79 F5.3 10-17W/m2 e_FHb [0.01/0.3]? Uncertainty in FHb
--------------------------------------------------------------------------------
Note (2): In units of 1e-16erg/s/cm2/Å.
Note (3): In units of 1e-14erg/s/cm2.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- SDSS SDSS name (JHHMMSS.ss+DDMMSS.s)
26- 29 F4.1 d tauHb [12.4/66.6] Rest-frame time lag
31- 33 F3.1 d e_tauHb [3.9/9.9] Negative uncertainty on tauHb
35- 38 F4.1 d E_tauHb [3.8/43.5] Positive uncertainty on tauHb
40- 43 I4 km/s FWHM [1297/3156] Full Width at Half Maximum
45- 46 I2 km/s e_FWHM [1/36] FWHM uncertainty
48- 51 F4.2 Msun logM* [6.8/8] log of BH mass
53- 56 F4.2 Msun e_logM* [0.04/0.3] Negative uncertainty on logM*
58- 61 F4.2 Msun E_logM* [0.05/0.4] Positive uncertainty on logM*
63- 66 F4.2 [-] logdM/dt [0.9/3] Accretion rate
68- 71 F4.2 [-] e_logdM/dt [0.1/0.8] Negative uncertainty on logdM/dt
73- 76 F4.2 [-] E_logdM/dt [0.1/0.6] Positive uncertainty on logdM/dt
78- 82 F5.2 [10-7W] logL5100 [43.9/45.6] log of 5100Å luminosity
84- 87 F4.2 [10-7W] e_logL5100 [0.01/0.2] logL5100 uncertainty
89- 93 F5.2 [10-7W] logLHb [42.1/43.6] log of Hβ luminosity
95- 98 F4.2 [10-7W] e_logLHb [0.01/0.05] logLHb uncertainty
100-104 F5.1 0.1nm EWHb [31.8/140.4] Hβ equivalent width
106-109 F4.1 0.1nm e_EWHb [1.3/17] EWHb uncertainty
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Du et al. Paper I. 2014ApJ...782...45D 2014ApJ...782...45D Cat. J/ApJ/782/45
Wang et al. Paper II. 2014ApJ...793..108W 2014ApJ...793..108W Cat. J/ApJ/793/108
Hu et al. Paper III. 2015ApJ...804..138H 2015ApJ...804..138H
Du et al. Paper IV. 2015ApJ...806...22D 2015ApJ...806...22D Cat. J/ApJ/806/22
Du et al. Paper V. 2016ApJ...825..126D 2016ApJ...825..126D Cat. J/ApJ/825/126
Du et al. Paper VI. 2016ApJ...820...27D 2016ApJ...820...27D
Xiao et al. Paper VII. 2018ApJ...864..109X 2018ApJ...864..109X
Li et al. Paper VIII. 2018ApJ...869..137L 2018ApJ...869..137L
Du et al. Paper IX. 2018ApJ...856....6D 2018ApJ...856....6D This catalog
Lu et al. Paper X. 2019ApJ...877...23L 2019ApJ...877...23L Cat. J/ApJ/877/23
Cackett et al. Paper XI. 2020ApJ...896....1C 2020ApJ...896....1C Cat. J/ApJ/896/1
Hu et al. Paper XII. 2021ApJS..253...20H 2021ApJS..253...20H Cat. J/ApJS/253/20
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 08-Feb-2019