J/ApJ/856/6         SEAMBHs IX. 10 new Hβ light curves         (Du+, 2018)

Supermassive black holes with high accretion rates in active galactic nuclei. IX. 10 new observations of reverberation mapping and shortened Hβ lags. Du Pu, Zhang Z.-X., Wang K., Huang Y.-K., Zhang Y., Lu K.-X., Hu C., Li Y.-R., Bai J.-M., Bian W.-H., Yuan Y.-F., Ho L.C., Wang J.-M. <Astrophys. J., 856, 6 (2018)> =2018ApJ...856....6D 2018ApJ...856....6D
ADC_Keywords: Active gal. nuclei; Accretion; Spectroscopy; Photometry, SDSS; Black holes Keywords: accretion, accretion disks ; galaxies: active ; galaxies: nuclei ; quasars: supermassive black holes Abstract: As one paper in a series reporting on a large reverberation mapping campaign of super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs), we present the results of 10 SEAMBHs monitored spectroscopically during 2015-2017. Six of them are observed for the first time, and have generally higher 5100Å luminosities than the SEAMBHs monitored in our campaign from 2012 to 2015; the remaining four are repeat observations to check if their previous lags change. Similar to the previous SEAMBHs, the Hβ time lags of the newly observed objects are shorter than the values predicted by the canonical RHβ-L5100 relation of sub-Eddington AGNs, by factors of ∼2-6, depending on the accretion rate. The four previously observed objects have lags consistent with previous measurements. We provide linear regressions for the RHβ-L5100 relation, solely for the SEAMBH sample and for low-accretion AGNs. We find that the relative strength of Fe ii and the profile of the Hβ emission line can be used as proxies of accretion rate, showing that the shortening of Hβ lags depends on accretion rates. The recent SDSS-RM discovery of shortened Hβ lags in AGNs with low accretion rates provides compelling evidence for retrograde accretion onto the black hole. These evidences show that the canonical RHβ-L5100 relation holds only in AGNs with moderate accretion rates. At low accretion rates, it should be revised to include the effects of black hole spin, whereas the accretion rate itself becomes a key factor in the regime of high accretion rates. Description: The details of the target selection, telescope, instrument, observation, and data reduction of the SEAMBH2015-2016 campaign are, with only minor exceptions, almost the same as those for the observations in 2013 October-2015 June (hereafter SEAMBH2013-2014, Papers IV (Du+, 2015, J/ApJ/806/22) and V (Du+, 2016, J/ApJ/825/126). The photometric and spectroscopic data used in this work were taken with the Lijiang 2.4m telescope at the Yunnan Observatories of the Chinese Academy of Sciences. The images were taken using the SDSS r' filter. For spectroscopy, we used Grism 3, which has a wavelength coverage of 3800-9000Å. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 93 10 The sample of SEAMBH2015-2017 (SEAMBHs: super-Eddington accreting massive black holes) table3.dat 79 627 Light curves table6.dat 109 10 Results of Hb reverberation mapping of the SEAMBHs in 2015-2017 -------------------------------------------------------------------------------- See also: J/ApJ/613/682 : AGN masses & broad-line region sizes (Peterson+, 2004) J/ApJ/687/78 : FeII emission in quasars (Hu+, 2008) J/ApJ/683/L115 : Intermediate-line region in quasars (Hu+, 2008) J/ApJ/736/86 : FeII emission in SDSS type 1 AGNs (Dong+, 2011) J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011) J/ApJ/755/60 : Reverberation mapping for 5 Seyfert 1 galaxies (Grier+, 2012) J/MNRAS/431/836 : Type 1 AGN at low z. III. (Stern+, 2013) J/ApJ/782/45 : SEAMBHs. I. Mrk 142, Mrk 335, & IRAS F12397+3333 (Du+, 2014) J/ApJ/788/159 : 17 Seyfert 1 galaxies light curves (Koshida+, 2014) J/ApJ/793/108 : SEAMBHs. II. Continuum and Hbeta LCs (Wang+, 2014) J/ApJS/217/26 : Lick AGN monitoring 2011: light curves (Barth+, 2015) J/ApJ/806/22 : SEAMBHs IV. Hβ time lags (Du+, 2015) J/ApJS/216/4 : SDSS-RM project: technical overview (Shen+, 2015) J/ApJ/825/126 : SEAMBHs. V. The third year (Du+, 2016) J/ApJ/818/L14 : RM AGNs accretion rates and BH masses (Du+, 2016) J/ApJ/827/118 : A new reverberation mapping campaign on NGC 5548 (Lu+, 2016) J/ApJ/818/30 : Lag measurements for 15 z<0.8 QSOs from SDSS-RM (Shen+, 2016) J/ApJ/840/97 : Optical RM campaign of 5 AGNs (Fausnaugh+, 2017) J/ApJ/851/21 : SDSS RM project first year of observations (Grier+, 2017) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- SDSS SDSS name (JHHMMSS.ss+DDMMSS.s) 26- 27 I2 h RAh [7/10] Hour of right ascension (J2000) 29- 30 I2 min RAm Minute of right ascension (J2000) 32- 36 F5.2 s RAs Second of right ascension (J2000) 38 A1 --- DE- [+] Sign of declination (J2000) 39- 40 I2 deg DEd [5/47] Degree of declination (J2000) 42- 43 I2 arcmin DEm Arcminute of declination (J2000) 45- 48 F4.1 arcsec DEs Arcsecond of declination (J2000) 50- 55 F6.4 --- z [0.12/0.41] Redshift 57- 73 A17 --- Dates Monitoring period (UT dates) 75- 76 I2 --- Nsp [24/89] Number of spectroscopic epochs 78- 80 F3.1 d Cad Cadence; average sampling interval of the objects 82- 86 F5.1 arcsec R* [57/211] Angular distance between the object and the comparison star 88- 93 F6.1 deg PA [-157/139] Position angle of the comparison star from the object -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- SDSS SDSS name (JHHMMSS.ss+DDMMSS.s) 26- 32 F7.3 d JDphot [20.3/622.1] Julian Date of photometry; JD-2457300 34- 39 F6.3 mag rmag [15.2/17.8] SDSS r' filter magnitude 41- 45 F5.3 mag e_rmag [0.001/0.05] Uncertainty in rmag 47- 53 F7.3 d JDspec [22.2/622.1]? Julian Date of spectroscopy; JD-2457300 55- 60 F6.3 10-18W/m2/nm F5100 [1.5/18.3]? Continuum flux at 5100Å (2) 62- 66 F5.3 10-18W/m2/nm e_F5100 [0.006/0.4]? Uncertainty in F5100 68- 73 F6.3 10-17W/m2 FHb [0.9/13]? Hβ line flux (3) 75- 79 F5.3 10-17W/m2 e_FHb [0.01/0.3]? Uncertainty in FHb -------------------------------------------------------------------------------- Note (2): In units of 1e-16erg/s/cm2/Å. Note (3): In units of 1e-14erg/s/cm2. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- SDSS SDSS name (JHHMMSS.ss+DDMMSS.s) 26- 29 F4.1 d tauHb [12.4/66.6] Rest-frame time lag 31- 33 F3.1 d e_tauHb [3.9/9.9] Negative uncertainty on tauHb 35- 38 F4.1 d E_tauHb [3.8/43.5] Positive uncertainty on tauHb 40- 43 I4 km/s FWHM [1297/3156] Full Width at Half Maximum 45- 46 I2 km/s e_FWHM [1/36] FWHM uncertainty 48- 51 F4.2 Msun logM* [6.8/8] log of BH mass 53- 56 F4.2 Msun e_logM* [0.04/0.3] Negative uncertainty on logM* 58- 61 F4.2 Msun E_logM* [0.05/0.4] Positive uncertainty on logM* 63- 66 F4.2 [-] logdM/dt [0.9/3] Accretion rate 68- 71 F4.2 [-] e_logdM/dt [0.1/0.8] Negative uncertainty on logdM/dt 73- 76 F4.2 [-] E_logdM/dt [0.1/0.6] Positive uncertainty on logdM/dt 78- 82 F5.2 [10-7W] logL5100 [43.9/45.6] log of 5100Å luminosity 84- 87 F4.2 [10-7W] e_logL5100 [0.01/0.2] logL5100 uncertainty 89- 93 F5.2 [10-7W] logLHb [42.1/43.6] log of Hβ luminosity 95- 98 F4.2 [10-7W] e_logLHb [0.01/0.05] logLHb uncertainty 100-104 F5.1 0.1nm EWHb [31.8/140.4] Hβ equivalent width 106-109 F4.1 0.1nm e_EWHb [1.3/17] EWHb uncertainty -------------------------------------------------------------------------------- History: From electronic version of the journal References: Du et al. Paper I. 2014ApJ...782...45D 2014ApJ...782...45D Cat. J/ApJ/782/45 Wang et al. Paper II. 2014ApJ...793..108W 2014ApJ...793..108W Cat. J/ApJ/793/108 Hu et al. Paper III. 2015ApJ...804..138H 2015ApJ...804..138H Du et al. Paper IV. 2015ApJ...806...22D 2015ApJ...806...22D Cat. J/ApJ/806/22 Du et al. Paper V. 2016ApJ...825..126D 2016ApJ...825..126D Cat. J/ApJ/825/126 Du et al. Paper VI. 2016ApJ...820...27D 2016ApJ...820...27D Xiao et al. Paper VII. 2018ApJ...864..109X 2018ApJ...864..109X Li et al. Paper VIII. 2018ApJ...869..137L 2018ApJ...869..137L Du et al. Paper IX. 2018ApJ...856....6D 2018ApJ...856....6D This catalog Lu et al. Paper X. 2019ApJ...877...23L 2019ApJ...877...23L Cat. J/ApJ/877/23 Cackett et al. Paper XI. 2020ApJ...896....1C 2020ApJ...896....1C Cat. J/ApJ/896/1 Hu et al. Paper XII. 2021ApJS..253...20H 2021ApJS..253...20H Cat. J/ApJS/253/20
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 08-Feb-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line