J/ApJ/857/111   Stellar yields of rotating first stars. II.   (Takahashi+, 2018)

Stellar yields of rotating first stars. II. Pair-instability supernovae and comparison with observations. Takahashi K., Yoshida T., Umeda H. <Astrophys. J., 857, 111 (2018)> =2018ApJ...857..111T 2018ApJ...857..111T
ADC_Keywords: Abundances; Models, evolutionary Keywords: nuclear reactions, nucleosynthesis, abundances ; stars: abundances ; stars: Population III ; stars: rotation Abstract: Recent theory predicts that first stars are born with a massive initial mass of ≳100M. Pair-instability supernova (PISN) is a common fate for such massive stars. Our final goal is to prove the existence of PISNe and thus the high-mass nature of the initial mass function in the early universe by conducting abundance profiling, in which properties of a hypothetical first star is constrained by metal-poor star abundances. In order to determine reliable and useful abundances, we investigate the PISN nucleosynthesis taking both rotating and nonrotating progenitors for the first time. We show that the initial and CO core mass ranges for PISNe depend on the envelope structures: nonmagnetic rotating models developing inflated envelopes have a lower shifted CO mass range of ∼70-125M☉, while nonrotating and magnetic rotating models with deflated envelopes have a range of ∼80-135M☉. However, we find no significant difference in explosive yields from rotating and nonrotating progenitors, except for large nitrogen production in nonmagnetic rotating models. Furthermore, we conduct the first systematic comparison between theoretical yields and a large sample of metal-poor star abundances. We find that the predicted low [Na/Mg]~-1.5 and high [Ca/Mg]∼0.5-1.3 abundance ratios are the most important to discriminate PISN signatures from normal metal-poor star abundances, and confirm that no currently observed metal-poor star matches with the PISN abundance. An extensive discussion on the nondetection is presented. Description: In this work, we newly perform a sequence of numerical simulations of the evolution, explosion, and nucleosynthesis for first stars with initial masses of ∼140-300M. Furthermore, we conduct the first systematic comparison between pair-instability supernova (PISN) theoretical yields and observations using the big stellar abundance data compiled in the SAGA database (http://sagadatabase.jp/; Suda+ 2008PASJ...60.1159S 2008PASJ...60.1159S , 2011, J/MNRAS/412/843 ; Yamada+ 2013MNRAS.436.1362Y 2013MNRAS.436.1362Y and Suda+ 2017PASJ...69...76S 2017PASJ...69...76S). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 70 32 Model properties table5.dat 70 72 Stellar sample mr160.dat 26 89 PISN Yields of the magnetic rotating model; Mini=160Msun mr180.dat 26 89 PISN Yields of the magnetic rotating model; Mini=180Msun mr200.dat 26 89 PISN Yields of the magnetic rotating model; Mini=200Msun mr220.dat 26 89 PISN Yields of the magnetic rotating model; Mini=220Msun mr240.dat 26 89 PISN Yields of the magnetic rotating model; Mini=240Msun mr260.dat 26 89 PISN Yields of the magnetic rotating model; Mini=260Msun nr180.dat 26 89 PISN Yields of the non-rotating model; Mini=180Msun nr200.dat 26 89 PISN Yields of the non-rotating model; Mini=200Msun nr220.dat 26 89 PISN Yields of the non-rotating model; Mini=220Msun nr240.dat 26 89 PISN Yields of the non-rotating model; Mini=240Msun nr260.dat 26 89 PISN Yields of the non-rotating model; Mini=260Msun nr280.dat 26 89 PISN Yields of the non-rotating model; Mini=280Msun nm160.dat 26 89 PISN Yields of the non-magnetic rotating model; Mini=160Msun nm180.dat 26 89 PISN Yields of the non-magnetic rotating model; Mini=180Msun nm200.dat 26 89 PISN Yields of the non-magnetic rotating model; Mini=200Msun nm220.dat 26 89 PISN Yields of the non-magnetic rotating model; Mini=220Msun nm240.dat 26 89 PISN Yields of the non-magnetic rotating model; Mini=240Msun nm260.dat 26 89 PISN Yields of the non-magnetic rotating model; Mini=260Msun -------------------------------------------------------------------------------- See also: J/ApJS/155/651 : Evolution of extremely metal-poor stars (Herwig+, 2004) J/A+A/490/769 : Yields from extremely metal-poor stars (Campbell+, 2008) J/ApJ/681/1524 : Detailed abundances for 28 metal-poor stars (Lai+, 2008) J/ApJ/724/975 : Abundances of metal-poor stars (Roederer+, 2010) J/ApJ/742/54 : CASH project II. 14 EMP stars (Hollek+, 2011) J/MNRAS/412/843 : SAGA extremely metal-poor stars (Suda+, 2011) J/A+A/537/A146 : Stellar models with rotation. 0.8<M<120 (Ekstrom+, 2012) J/other/Sci/337.444 : RV curves of Galactic massive O stars (Sana+, 2012) J/AJ/145/13 : Metal-poor stars from SDSS/SEGUE. I. Abundances (Aoki+, 2013) J/ApJ/764/21 : Stellar evolutionary models with 13-120Msun (Chieffi+, 2013) J/ApJ/778/56 : Hamburg/ESO Survey extremely metal-poor stars (Cohen+, 2013) J/A+A/558/A103 : Stellar models with rotation. 0.8<M<120 (Georgy+, 2013) J/ApJ/762/27 : Most metal-poor stars. III. [Fe/H]≤-3.0 stars (Yong+, 2013) J/ApJ/762/26 : Most metal-poor stars. II. Galactic halo stars (Yong+, 2013) J/A+A/566/A146 : Pair-instability supernovae models (Kozyreva+, 2014) J/ApJ/781/40 : Metal-poor stars from HES survey. II. (Placco+, 2014) J/AJ/147/136 : Stars of very low metal abundance. VI. (Roederer+, 2014) J/ApJ/807/171 : SkyMapper Survey metal-poor star spectrosc. (Jacobson+, 2015) J/A+A/606/A55 : Rotational mixing in CEMP-s stars (Matrozis+, 2017) J/ApJ/857/46 : Modelled vs obs. abundances of EMP stars (Ishigaki+, 2018) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Mod Model (G1) 4- 6 I3 Msun Mini [100/290] Initial model mass 8- 13 F6.2 Msun Mfin [94.7/290] Final model mass 15- 17 I3 km/s Vini [0/806] Surface rotation velocity 19- 22 F4.2 --- Vini/Vk [0/0.3] Vini to Vk value (1) 24- 28 F5.3 Myr tauH [1.5/2.5] Lifetime of the core hydrogen burning stage 30- 34 F5.3 10+5yr tauHe [2.6/3.4] Lifetime of the core helium burning stage 36- 41 F6.2 Msun McHe [45.9/150] Mass of the Helium and carbon core 43- 48 F6.2 Msun McCO [42/140.1] Mass of the carbon-oxygen core 50- 54 A5 --- Fate Fate (2) 56- 61 F6.3 10+44J Etot [1/94.5]? Explosion energy in 1051 erg units 62 A1 --- u_Etot [)] Flag on Etot 64- 69 F6.3 Msun M56Ni [0.009/48]? Ejected 56Ni mass 70 A1 --- u_M56Ni [)] Flag on Etot -------------------------------------------------------------------------------- Note (1): Vk: νK=(GM/R)0.5, the surface Kepler velocity at the zero-age main sequence. Note (2): Fate is chosen from among pulsational PISN (PPISN), pair-instability supernova (PISN), or BH according to the explosion simulations. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Seq [1/72] Sequential ID 4- 21 A18 --- Name Object name 23- 27 F5.2 --- [Fe/H] [-4.2/-1.8]? Fe/H abundance 29- 33 F5.2 --- [Na/Mg] [-0.7/1.4]? Na/Mg abundance 35- 39 F5.2 --- [Al/Mg] [-1.5/0]? Al/Mg abundance 41- 44 F4.2 --- [Si/Mg] [0.1/1]? Si/Mg abundance 46- 50 F5.2 --- [Ca/Mg] [-0.4/0.5]? Ca/Mg abundance 52- 52 A1 --- l_[Sc/Mg] Limit flag for [Sc/Mg] 54- 58 F5.2 --- [Sc/Mg] [-1.1/0.3]? Sc/Mg abundance 60- 60 A1 --- l_[Zn/Fe] Limit flag for [Zn/Fe] 62- 66 F5.2 --- [Zn/Fe] [-3.3/1.4]? Zn/Fe abundance 68- 70 A3 --- Refs References (1) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = Roederer et al. (2014, J/AJ/147/136); 2 = Roederer et al. (2014ApJ...784..158R 2014ApJ...784..158R); 3 = Jacobson et al. (2015, J/ApJ/807/171); 4 = Honda et al. (2004ApJ...607..474H 2004ApJ...607..474H); 5 = Lai et al. (2008, J/ApJ/681/1524); 6 = Aoki et al. (2005ApJ...632..611A 2005ApJ...632..611A); 7 = Roederer et al. (2010, J/ApJ/724/975); 8 = Placco et al. (2014, J/ApJ/781/40); 9 = Siqueira Mello et al. (2014A&A...565A..93S 2014A&A...565A..93S); 10 = Hansen et al. (2015ApJ...807..173H 2015ApJ...807..173H); 11 = Hollek et al. (2011, J/ApJ/742/54); 12 = Yong et al. (2013, J/ApJ/762/26); 13 = Caffau et al. (2011A&A...534A...4C 2011A&A...534A...4C); 14 = Aoki et al. (2014Sci...345..912A 2014Sci...345..912A). -------------------------------------------------------------------------------- Byte-by-byte Description of file: mr*.dat nr*.dat nm*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Mod Model (G1) 4- 6 I3 Msun Mini [160/280] Initial model mass, solar units 8- 16 A9 --- Element Element, in LaTeX formatting 18- 26 E9.4 Msun Yield [1.6e-33/85] Yield, solar units -------------------------------------------------------------------------------- Global notes: Note (G1): Model: NR = Non-Rotating models; NM = Non-Magnetic Rotating models; MR = Magnetic Rotating models. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Takahashi et al. Paper I. 2014ApJ...794...40T 2014ApJ...794...40T
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 26-Feb-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line