J/ApJ/857/111 Stellar yields of rotating first stars. II. (Takahashi+, 2018)
Stellar yields of rotating first stars.
II. Pair-instability supernovae and comparison with observations.
Takahashi K., Yoshida T., Umeda H.
<Astrophys. J., 857, 111 (2018)>
=2018ApJ...857..111T 2018ApJ...857..111T
ADC_Keywords: Abundances; Models, evolutionary
Keywords: nuclear reactions, nucleosynthesis, abundances ; stars: abundances ;
stars: Population III ; stars: rotation
Abstract:
Recent theory predicts that first stars are born with a massive
initial mass of ≳100M☉. Pair-instability supernova (PISN) is a
common fate for such massive stars. Our final goal is to prove the
existence of PISNe and thus the high-mass nature of the initial mass
function in the early universe by conducting abundance profiling, in
which properties of a hypothetical first star is constrained by
metal-poor star abundances. In order to determine reliable and useful
abundances, we investigate the PISN nucleosynthesis taking both
rotating and nonrotating progenitors for the first time. We show that
the initial and CO core mass ranges for PISNe depend on the envelope
structures: nonmagnetic rotating models developing inflated envelopes
have a lower shifted CO mass range of ∼70-125M☉, while
nonrotating and magnetic rotating models with deflated envelopes have
a range of ∼80-135M☉. However, we find no significant difference
in explosive yields from rotating and nonrotating progenitors, except
for large nitrogen production in nonmagnetic rotating models.
Furthermore, we conduct the first systematic comparison between
theoretical yields and a large sample of metal-poor star abundances.
We find that the predicted low [Na/Mg]~-1.5 and high [Ca/Mg]∼0.5-1.3
abundance ratios are the most important to discriminate PISN
signatures from normal metal-poor star abundances, and confirm that no
currently observed metal-poor star matches with the PISN abundance. An
extensive discussion on the nondetection is presented.
Description:
In this work, we newly perform a sequence of numerical simulations of
the evolution, explosion, and nucleosynthesis for first stars with
initial masses of ∼140-300M☉.
Furthermore, we conduct the first systematic comparison between
pair-instability supernova (PISN) theoretical yields and observations
using the big stellar abundance data compiled in the SAGA database
(http://sagadatabase.jp/; Suda+ 2008PASJ...60.1159S 2008PASJ...60.1159S ,
2011, J/MNRAS/412/843 ; Yamada+ 2013MNRAS.436.1362Y 2013MNRAS.436.1362Y and
Suda+ 2017PASJ...69...76S 2017PASJ...69...76S).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 70 32 Model properties
table5.dat 70 72 Stellar sample
mr160.dat 26 89 PISN Yields of the magnetic rotating model; Mini=160Msun
mr180.dat 26 89 PISN Yields of the magnetic rotating model; Mini=180Msun
mr200.dat 26 89 PISN Yields of the magnetic rotating model; Mini=200Msun
mr220.dat 26 89 PISN Yields of the magnetic rotating model; Mini=220Msun
mr240.dat 26 89 PISN Yields of the magnetic rotating model; Mini=240Msun
mr260.dat 26 89 PISN Yields of the magnetic rotating model; Mini=260Msun
nr180.dat 26 89 PISN Yields of the non-rotating model; Mini=180Msun
nr200.dat 26 89 PISN Yields of the non-rotating model; Mini=200Msun
nr220.dat 26 89 PISN Yields of the non-rotating model; Mini=220Msun
nr240.dat 26 89 PISN Yields of the non-rotating model; Mini=240Msun
nr260.dat 26 89 PISN Yields of the non-rotating model; Mini=260Msun
nr280.dat 26 89 PISN Yields of the non-rotating model; Mini=280Msun
nm160.dat 26 89 PISN Yields of the non-magnetic rotating model;
Mini=160Msun
nm180.dat 26 89 PISN Yields of the non-magnetic rotating model;
Mini=180Msun
nm200.dat 26 89 PISN Yields of the non-magnetic rotating model;
Mini=200Msun
nm220.dat 26 89 PISN Yields of the non-magnetic rotating model;
Mini=220Msun
nm240.dat 26 89 PISN Yields of the non-magnetic rotating model;
Mini=240Msun
nm260.dat 26 89 PISN Yields of the non-magnetic rotating model;
Mini=260Msun
--------------------------------------------------------------------------------
See also:
J/ApJS/155/651 : Evolution of extremely metal-poor stars (Herwig+, 2004)
J/A+A/490/769 : Yields from extremely metal-poor stars (Campbell+, 2008)
J/ApJ/681/1524 : Detailed abundances for 28 metal-poor stars (Lai+, 2008)
J/ApJ/724/975 : Abundances of metal-poor stars (Roederer+, 2010)
J/ApJ/742/54 : CASH project II. 14 EMP stars (Hollek+, 2011)
J/MNRAS/412/843 : SAGA extremely metal-poor stars (Suda+, 2011)
J/A+A/537/A146 : Stellar models with rotation. 0.8<M<120 (Ekstrom+, 2012)
J/other/Sci/337.444 : RV curves of Galactic massive O stars (Sana+, 2012)
J/AJ/145/13 : Metal-poor stars from SDSS/SEGUE. I. Abundances (Aoki+, 2013)
J/ApJ/764/21 : Stellar evolutionary models with 13-120Msun (Chieffi+, 2013)
J/ApJ/778/56 : Hamburg/ESO Survey extremely metal-poor stars (Cohen+, 2013)
J/A+A/558/A103 : Stellar models with rotation. 0.8<M<120 (Georgy+, 2013)
J/ApJ/762/27 : Most metal-poor stars. III. [Fe/H]≤-3.0 stars (Yong+, 2013)
J/ApJ/762/26 : Most metal-poor stars. II. Galactic halo stars (Yong+, 2013)
J/A+A/566/A146 : Pair-instability supernovae models (Kozyreva+, 2014)
J/ApJ/781/40 : Metal-poor stars from HES survey. II. (Placco+, 2014)
J/AJ/147/136 : Stars of very low metal abundance. VI. (Roederer+, 2014)
J/ApJ/807/171 : SkyMapper Survey metal-poor star spectrosc. (Jacobson+, 2015)
J/A+A/606/A55 : Rotational mixing in CEMP-s stars (Matrozis+, 2017)
J/ApJ/857/46 : Modelled vs obs. abundances of EMP stars (Ishigaki+, 2018)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 A2 --- Mod Model (G1)
4- 6 I3 Msun Mini [100/290] Initial model mass
8- 13 F6.2 Msun Mfin [94.7/290] Final model mass
15- 17 I3 km/s Vini [0/806] Surface rotation velocity
19- 22 F4.2 --- Vini/Vk [0/0.3] Vini to Vk value (1)
24- 28 F5.3 Myr tauH [1.5/2.5] Lifetime of the core hydrogen
burning stage
30- 34 F5.3 10+5yr tauHe [2.6/3.4] Lifetime of the core helium
burning stage
36- 41 F6.2 Msun McHe [45.9/150] Mass of the Helium and carbon core
43- 48 F6.2 Msun McCO [42/140.1] Mass of the carbon-oxygen core
50- 54 A5 --- Fate Fate (2)
56- 61 F6.3 10+44J Etot [1/94.5]? Explosion energy in 1051 erg units
62 A1 --- u_Etot [)] Flag on Etot
64- 69 F6.3 Msun M56Ni [0.009/48]? Ejected 56Ni mass
70 A1 --- u_M56Ni [)] Flag on Etot
--------------------------------------------------------------------------------
Note (1): Vk: νK=(GM/R)0.5, the surface Kepler velocity at the zero-age
main sequence.
Note (2): Fate is chosen from among pulsational PISN (PPISN),
pair-instability supernova (PISN), or BH according to
the explosion simulations.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- Seq [1/72] Sequential ID
4- 21 A18 --- Name Object name
23- 27 F5.2 --- [Fe/H] [-4.2/-1.8]? Fe/H abundance
29- 33 F5.2 --- [Na/Mg] [-0.7/1.4]? Na/Mg abundance
35- 39 F5.2 --- [Al/Mg] [-1.5/0]? Al/Mg abundance
41- 44 F4.2 --- [Si/Mg] [0.1/1]? Si/Mg abundance
46- 50 F5.2 --- [Ca/Mg] [-0.4/0.5]? Ca/Mg abundance
52- 52 A1 --- l_[Sc/Mg] Limit flag for [Sc/Mg]
54- 58 F5.2 --- [Sc/Mg] [-1.1/0.3]? Sc/Mg abundance
60- 60 A1 --- l_[Zn/Fe] Limit flag for [Zn/Fe]
62- 66 F5.2 --- [Zn/Fe] [-3.3/1.4]? Zn/Fe abundance
68- 70 A3 --- Refs References (1)
--------------------------------------------------------------------------------
Note (1): References as follows:
1 = Roederer et al. (2014, J/AJ/147/136);
2 = Roederer et al. (2014ApJ...784..158R 2014ApJ...784..158R);
3 = Jacobson et al. (2015, J/ApJ/807/171);
4 = Honda et al. (2004ApJ...607..474H 2004ApJ...607..474H);
5 = Lai et al. (2008, J/ApJ/681/1524);
6 = Aoki et al. (2005ApJ...632..611A 2005ApJ...632..611A);
7 = Roederer et al. (2010, J/ApJ/724/975);
8 = Placco et al. (2014, J/ApJ/781/40);
9 = Siqueira Mello et al. (2014A&A...565A..93S 2014A&A...565A..93S);
10 = Hansen et al. (2015ApJ...807..173H 2015ApJ...807..173H);
11 = Hollek et al. (2011, J/ApJ/742/54);
12 = Yong et al. (2013, J/ApJ/762/26);
13 = Caffau et al. (2011A&A...534A...4C 2011A&A...534A...4C);
14 = Aoki et al. (2014Sci...345..912A 2014Sci...345..912A).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: mr*.dat nr*.dat nm*.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 A2 --- Mod Model (G1)
4- 6 I3 Msun Mini [160/280] Initial model mass, solar units
8- 16 A9 --- Element Element, in LaTeX formatting
18- 26 E9.4 Msun Yield [1.6e-33/85] Yield, solar units
--------------------------------------------------------------------------------
Global notes:
Note (G1): Model:
NR = Non-Rotating models;
NM = Non-Magnetic Rotating models;
MR = Magnetic Rotating models.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Takahashi et al. Paper I. 2014ApJ...794...40T 2014ApJ...794...40T
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 26-Feb-2019