J/ApJ/865/44 Abundances of evolved stars from IGRINS. I. (Afsar+, 2018)
Chemical compositions of evolved stars from near-infrared IGRINS high-resolution
spectra.
I. Abundances in three red horizontal branch stars.
Afsar M., Sneden C., Wood M.P., Lawler J.E., Bozkurt Z., Bocek Topcu G.,
Mace G.N., Kim H., Jaffe D.T.
<Astrophys. J., 865, 44 (2018)>
=2018ApJ...865...44A 2018ApJ...865...44A
ADC_Keywords: Abundances; Stars, horizontal branch; Spectra, infrared;
Optical
Keywords: instrumentation: spectrographs; stars: abundances; stars: atmospheres;
stars: evolution; stars: horizontal-branch;
stars: individual (HIP 54048, HIP 57748, HIP 114809)
Abstract:
We have derived elemental abundances of three field red horizontal
branch stars using high-resolution (R∼45000), high signal-to-noise
ratio (S/N≳200) H- and K-band spectra obtained with the Immersion
Grating Infrared Spectrograph (IGRINS). We have determined the
abundances of 21 elements, including α (Mg, Si, Ca, S), odd-Z
(Na, Al, P, K), Fe-group (Sc, Ti, Cr, Co, Ni), neutron-capture (Ce,
Nd, Yb), CNO-group elements. S, P, and K are determined for the first
time in these stars. H- and K-band spectra provide a substantial
number of S I lines, which potentially can lead to a more robust
exploration of the role of sulfur in the cosmochemical evolution of
the Galaxy. We have also derived 12C/13C ratios from synthetic
spectra of the first-overtone 12CO (2-0) and (3-1) and 13CO (2-0)
lines near 23440Å and 13CO (3-1) lines at about 23730Å.
Comparison of our results with the ones obtained from the optical
region suggests that the IGRINS high-resolution H- and K-band spectra
offer more internally self-consistent line abundances of the same
species for several elements, especially the α-elements. This in
turn provides more reliable abundances for the elements with
analytical difficulties in the optical spectral range.
Description:
High-resolution, high signal-to-noise ratio (S/N>200 per resolution
element) spectra of HIP 54048, HIP 57748, and HIP 114809 were obtained
with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m
Harlan J. Smith Telescope (HJS) at McDonald Observatory. The data were
gathered in 2014 during an instrument commissioning run on May 24 and
27, and then on a separate run on October 19.
An important capability of IGRINS is that it obtains the complete
coverage of H and K bands at high resolving power (R∼45000)
simultaneously without any adjustments to the instrument components.
In a single exposure, the data cover a wavelength range between 14800
and 24800Å, with a small gap of about 100Å between bands.
The optical spectra of HIP 54048, HIP 57748, and HIP 114809 were
obtained during observing runs in 2009 and 2010, and their analyses
were first presented in Afsar+, 2012AJ....144...20A 2012AJ....144...20A and refined in
Afsar+ 2018 (J/AJ/155/240). The details of the optical observations
and data reduction are described in that paper.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 71 3 Basic program star data
table2.dat 31 3 Model atmosphere parameters
table3.dat 48 248 Abundances from individual transition
--------------------------------------------------------------------------------
See also:
I/311 : Hipparcos, the New Reduction (van Leeuwen, 2007)
I/345 : Gaia DR2 (Gaia Collaboration, 2018)
J/A+AS/141/491 : Chemical composition of halo and disk stars (Nissen+, 2000)
J/A+A/354/169 : Metal-poor field stars abundances (Gratton+, 2000)
J/A+A/360/509 : Chemical abundances in 7 red giants (Hamdani+, 2000)
J/A+A/380/578 : EWs of 13 horizontal branch stars (Tautvaisiene+, 2001)
J/A+A/435/373 : Broadening of Fe II lines by H collisions (Barklem+, 2005)
J/ApJ/645/613 : Abundances of HD 221170 (Ivans+, 2006)
J/AJ/134/1216 : Abundances of NGC7142, 6939, & IC4756 stars (Jacobson+, 2007)
J/ApJ/667/1267 : CrI transition probabilities (Sobeck+, 2007)
J/ApJS/182/51 : Transition prob. of rare earth elements (Lawler+, 2009)
J/AJ/140/1694 : Abundances of non-variable red & blue HB stars (For+, 2010)
J/A+A/535/A30 : Abundances of 12 stars in open clusters (Carrera+, 2011)
J/AJ/141/175 : Abundances in M15 RGB/RHB stars (Sobeck+, 2011)
J/ApJ/753/64 : Abundances for 97 metal-poor stars (Ishigaki+, 2012)
J/MNRAS/419/1350 : Red giants abundances in 4 open clusters (Reddy+, 2012)
J/ApJS/208/27 : Sun and HD 84937 TiII log(gf) and abundances (Wood+, 2013)
J/ApJ/797/69 : Abundances of late-type stars (Roederer+, 2014)
J/ApJS/214/26 : Line lists for CN isotopes transitions (Sneden+, 2014)
J/ApJS/211/20 : NiI transition probability measurements (Wood+, 2014)
J/MNRAS/446/3562 : Abundances of red giants in NGC752 (Bocek Topcu+, 2015)
J/ApJS/220/13 : Co I transition probabilities (Lawler+, 2015)
J/ApJS/221/24 : SDSS-III APOGEE H-band spectral line lists (Shetrone+, 2015)
J/ApJ/819/103 : Abundances of two very metal-poor stars (Afsar+, 2016)
J/MNRAS/463/580 : Abundances of red giants in NGC6940 (Bocek+, 2016)
J/A+A/594/A43 : APOGEE/Kepler sample stars abundances (Hawkins+, 2016)
J/A+A/600/A104 : Potassium abundance in 3 GCs (Mucciarelli+, 2017)
J/AJ/155/240 : A spectroscopic survey of field RHB stars (Afsar+, 2018)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [HIP]
5- 10 I6 --- HIP HIP number
12- 20 A9 --- HD HD name
22- 25 F4.2 mag Vmag [6.3/7.9] SIMBAD V-band magnitude
27- 30 F4.2 mag Hmag [4.4/6.2] SIMBAD H-band magnitude
32- 35 F4.2 mag Kmag [4.3/6.1] SIMBAD K-band magnitude
37- 40 F4.2 mas plxHIP [4.4/6.3] Parallax from HIP
(van Leeuwen, 2007, I/311)
42- 45 F4.2 mas plxGaia [4.7/5.9] Parallax from Gaia DR2 (I/345)
47- 50 F4.2 mag VMag [0.1/1.3] Absolute V-band magnitude
based on Gaia DR2
52- 62 A11 "Y/M/D" Date UT date of IGRINS observation
64- 66 I3 s Exp [120/720] Exposure time
68 A1 --- u_S/N [~] Uncertainty flag on S/N
69- 71 I3 --- S/N [200/450] Signal to noise ratio
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [HIP]
5- 10 I6 --- HIP HIP number
12- 15 I4 K Teff [5099/5307] Effective temperature (1)
17- 20 F4.2 [cm/s2] logg [2.3/2.7] Log of surface gravity (1)
22- 26 F5.2 [-] [M/H] [-0.4/-0.1] Metallicity (1)
28- 31 F4.2 km/s Vt [1.3/1.9] Microturbulent velocity ξt (1)
--------------------------------------------------------------------------------
Note (1): From Afsar+, 2018, J/AJ/155/240
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- Ion Species identifier
7- 15 F9.3 0.1nm lambda [4545.9/23379.2] Wavelength in Angstroms
17- 20 F4.2 eV LEP [0/9.7] Lower excitation potential
22- 26 F5.2 [-] log(gf) [-4.8/0.8] log oscillator strength
28- 29 I2 --- r_log(gf) [1/30] Source code for log(gf) (1)
31- 33 A3 --- Meth Method use to obtain abundance (2)
35- 38 F4.2 [-] logAbd1 [0.8/7.9]? HIP 54048 log abundance of Ion
40- 43 F4.2 [-] logAbd2 [0.6/8.4]? HIP 57748 log abundance of Ion
45- 48 F4.2 [-] logAbd3 [0.5/8]? HIP 114809 log abundance of Ion
--------------------------------------------------------------------------------
Note (1): Reference as follows:
1 = Kramida A., Ralchanko Y., Reader J. and NIST ASD Team 2014 -
NIST Atomic Spectra Database (version 5.2 --
http://physics.nist.gov/asd);
2 = Kurucz (2011CaJPh..89..417K 2011CaJPh..89..417K);
3 = Revsol: reverse solar analysis;
4 = Lobel (2011CaJPh..89..395L 2011CaJPh..89..395L);
5 = Ryabchikova et al. (2015PhyS...90e4005R 2015PhyS...90e4005R];
6 = Ivans et al. (2006, J/ApJ/645/613);
7 = For & Sneden (2010, J/AJ/140/1694);
8 = Ishigaki et al. (2012, J/ApJ/753/64);
9 = Barbuy et al. (2007AJ....134.1613B 2007AJ....134.1613B);
10 = Reddy et al. (2012, J/MNRAS/419/1350);
11 = Carrera & Pancino (2011, J/A+A/535/A30);
12 = Smith (1981A&A...103..351S 1981A&A...103..351S);
13 = Hamdani et al. (2000, J/A+A/360/509);
14 = Smith & Raggett (1981A&A...103..351S 1981A&A...103..351S);
15 = Lawler et al. (2013ApJS..205...11L 2013ApJS..205...11L);
16 = Wood et al. (2013, J/ApJS/208/27);
17 = Wood et al. (2014ApJ...787L..16W 2014ApJ...787L..16W);
18 = Sobeck et al. (2007, J/ApJ/667/1267);
19 = Cohen et al. (2004ApJ...612.1107C 2004ApJ...612.1107C);
20 = Sobeck et al. (2011, J/AJ/141/175);
21 = Wood et al. (2014, J/ApJS/211/20);
22 = Jacobson et al. (2007, J/AJ/134/1216);
23 = Wiese W.L. & Martin G.A. 1980 - Wavelengths and transition
probabilities for atoms and atomic ions: Part 2. Transition
probabilities, NSRDS-NBS Vol. 68;
24 = Lawler et al. (2009, J/ApJS/182/51);
25 = Cunha et al. (2017ApJ...844..145C 2017ApJ...844..145C);
26 = Den Hartog et al. (2003ApJS..148..543D 2003ApJS..148..543D);
27 = Hasselquist et al. (2016ApJ...833...81H 2016ApJ...833...81H);
28 = Lawler & Dakin (1989JOSAB...6.1457L 1989JOSAB...6.1457L);
29 = Pehlivan et al. (2015A&A...582..A98P);
30 = Lawler et al. (2015, J/ApJS/220/13).
Note (2): Method as follows:
SYN = spectrum synthesis;
EW = equivalent width matching.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 21-Aug-2019