J/ApJ/869/167       Improved empirical models for Type Ia SNe  (Saunders+, 2018)

SNEMO: Improved empirical models for Type Ia supernovae. Saunders C., Aldering G., Antilogus P., Bailey S., Baltay C., Barbary K., Baugh D., Boone K., Bongard S., Buton C., Chen J., Chotard N., Copin Y., Dixon S., Fagrelius P., Fakhouri H.K., Feindt U., Fouchez D., Gangler E., Hayden B., Hillebrandt W., Kim A.G., Kowalski M., Kusters D., Leget P.-F., Lombardo S., Nordin J., Pain R., Pecontal E., Pereira R., Perlmutter S., Rabinowitz D., Rigault M., Rubin D., Runge K., Smadja G., Sofiatti C., Suzuki N., Tao C., Taubenberger S., Thomas R.C., Vincenzi M., (the Nearby Supernova Factory) <Astrophys. J., 869, 167-167 (2018)> =2018ApJ...869..167S 2018ApJ...869..167S (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Supernovae ; Spectroscopy Keywords: cosmology: observations - supernovae: general Abstract: SN Ia cosmology depends on the ability to fit and standardize observations of supernova magnitudes with an empirical model. We present here a series of new models of SN Ia spectral time series that capture a greater amount of supernova diversity than is possible with the models that are currently customary. These are entitled SuperNova Empirical MOdels (SNEMO; https://snfactory.lbl.gov/snemo). The models are constructed using spectrophotometric time series from 172 individual supernovae from the Nearby Supernova Factory, comprising more than 2000 spectra. Using the available observations, Gaussian processes are used to predict a full spectral time series for each supernova. A matrix is constructed from the spectral time series of all the supernovae, and Expectation Maximization Factor Analysis is used to calculate the principal components of the data. K-fold cross-validation then determines the selection of model parameters and accounts for color variation in the data. Based on this process, the final models are trained on supernovae that have been dereddened using the Fitzpatrick and Massa extinction relation. Three final models are presented here: SNEMO2, a two-component model for comparison with current Type Ia models; SNEMO7, a seven-component model chosen for standardizing supernova magnitudes, which results in a total dispersion of 0.100mag for a validation set of supernovae, of which 0.087mag is unexplained (a total dispersion of 0.113mag with an unexplained dispersion of 0.097mag is found for the total set of training and validation supernovae); and SNEMO15, a comprehensive 15-component model that maximizes the amount of spectral time-series behavior captured. Description: Model spectra. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table3.dat 671 8352 Training and Validation Set Model Parameters list.dat 39 2474 *List of spectra sp/* . 2474 Individual spectra -------------------------------------------------------------------------------- Note on list.dat: Telescope UH88, Redshift=0.0. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 25 E25.18 d Phase [-10/46] SN phase 27- 50 E24.18 0.1nm lambda Wavelength (Angstroems) 52- 75 E24.18 --- SNEMO2c0 The SNEMO2c0 parameter 77-101 E25.18 --- SNEMO2c1 The SNEMO2c1 parameter 103-126 E24.18 --- SNEMO7c0 The SNEMO7c0 parameter 128-152 E25.18 --- SNEMO7c1 The SNEMO7c1 parameter 154-178 E25.18 --- SNEMO7c2 The SNEMO7c2 parameter 180-204 E25.18 --- SNEMO7c3 The SNEMO7c3 parameter 206-230 E25.18 --- SNEMO7c4 The SNEMO7c4 parameter 232-256 E25.18 --- SNEMO7c5 The SNEMO7c5 parameter 258-282 E25.18 --- SNEMO7c6 The SNEMO7c6 parameter 284-307 E24.18 --- SNEMO15c0 The SNEMO15c0 parameter 309-333 E25.18 --- SNEMO15c1 The SNEMO15c1 parameter 335-359 E25.18 --- SNEMO15c2 The SNEMO15c2 parameter 361-385 E25.18 --- SNEMO15c3 The SNEMO15c3 parameter 387-411 E25.18 --- SNEMO15c4 The SNEMO15c4 parameter 413-437 E25.18 --- SNEMO15c5 The SNEMO15c5 parameter 439-463 E25.18 --- SNEMO15c6 The SNEMO15c6 parameter 465-489 E25.18 --- SNEMO15c7 The SNEMO15c7 parameter 491-515 E25.18 --- SNEMO15c8 The SNEMO15c8 parameter 517-541 E25.18 --- SNEMO15c9 The SNEMO15c9 parameter 543-567 E25.18 --- SNEMO15c10 The SNEMO15c10 parameter 569-593 E25.18 --- SNEMO15c11 The SNEMO15c11 parameter 595-619 E25.18 --- SNEMO15c12 The SNEMO15c12 parameter 621-645 E25.18 --- SNEMO15c13 The SNEMO15c13 parameter 647-671 E25.18 --- SNEMO15c14 The SNEMO15c14 parameter -------------------------------------------------------------------------------- Byte-by-byte Description of file: list.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Model name 13- 19 F7.3 --- Phase Phase 22- 39 A18 --- FileName Name of the spectrum file in subdirectory sp -------------------------------------------------------------------------------- Byte-by-byte Description of file (#): sp/* -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 F6.1 0.1nm lambda Wavelength (Angstroems) 8- 30 E23.18 W/m2/nm Flux Flux (erg/s/cm2/Å * random offset) 32- 54 E23.19 W/m2/nm e_Flux rms uncertainty of Flux -------------------------------------------------------------------------------- Acknowledgements: Clare Saunders, cmsaunders(at)berkeley.edu
(End) Patricia Vannier [CDS] 03-Apr-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line