J/ApJ/870/104   1-500um obs. of nearby luminous IR galaxies   (Shangguan+, 2019)

Interstellar medium and star formation of starburst galaxies on the merger sequence. Shangguan J., Ho L.C., Li R., Zhuang M.-Y., Xie Y., Li Z. <Astrophys. J., 870, 104-104 (2019)> =2019ApJ...870..104S 2019ApJ...870..104S (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, IR; Star Forming Region; Active gal. nuclei; Interstellar medium; Redshifts Keywords: galaxies: active; galaxies: ISM; galaxies: Seyfert galaxies: starburst; infrared: galaxies; infrared: ISM Abstract: The interstellar medium is a key ingredient that governs star formation in galaxies. We present a detailed study of the infrared (∼1-500µm) spectral energy distributions of a large sample of 193 nearby (z~<0.088) luminous infrared galaxies (LIRGs) covering a wide range of evolutionary stages along the merger sequence. The entire sample has been observed uniformly by 2MASS, WISE, Spitzer, and Herschel. We perform a multicomponent decomposition of the spectra to derive physical parameters of the interstellar medium, including the intensity of the interstellar radiation field and the mass and luminosity of the dust. We also constrain the presence and strength of nuclear dust heated by active galactic nuclei. The radiation field of LIRGs tends to have much higher intensity than that of quiescent galaxies, and it increases toward advanced merger stages as a result of the central concentration of the interstellar medium and star formation. The total gas mass is derived from the dust mass and the galaxy stellar mass. We find that the gas fraction of LIRGs is on average ∼0.3 dex higher than that of main-sequence star-forming galaxies, rising moderately toward advanced merger stages. All LIRGs have star formation rates that place them above the galaxy star formation main sequence. Consistent with recent observations and numerical simulations, the global star formation efficiency of the sample spans a wide range, filling the gap between normal star-forming galaxies and extreme starburst systems. Description: The 201 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS; Armus+ 2009PASP..121..559A 2009PASP..121..559A) sample are all mapped by the Herschel Space Observatory with both the Photodetector Array Camera and Spectrometer (PACS), at 70, 100, and 160um, and the Spectral and Photometric Imaging Receiver (SPIRE), at 250, 350, and 500um. Chu et al. (2017, J/ApJS/229/25) provided integrated aperture photometry of the Herschel data for the entire GOALS sample. We supplement these data with our own measurements of near-IR photometry from 2MASS and mid-IR photometry from WISE to construct the full IR spectral energy distribution (SED) from 1 to 500um. We omit five objects that are too large to be fully covered by 2MASS and three objects contaminated by bright stars, mostly in W1 and W2, resulting in the final sample of 193 LIRGs used in our current study. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 172 193 Physical properties of the sample table3.dat 89 61 Objects with Spitzer/IRS spectra (Appendix A) -------------------------------------------------------------------------------- See also : II/156 : IRAS Faint Source Catalog, |b| > 10, Version 2.0 (Moshir+ 1989) VII/233 : The 2MASS Extended sources (IPAC/UMass, 2003-2006) II/328 : AllWISE Data Release (Cutri+ 2013) VI/139 : Herschel Observation Log (Herschel Science Centre, 2013) VIII/106 : Herschel/PACS Point Source Catalogs (Herschel team, 2017) J/ApJS/112/315 : Spectroscopic parameters of Seyfert nuclei (Ho+ 1997) J/A+AS/135/437 : AGNs with composite spectra. II. (Goncalves+ 1999) J/ApJ/522/113 : 1Jy IRAS galaxies optical spectroscopy (Veilleux+, 1999) J/ApJS/143/315 : IRAS 1Jy sample ultraluminous galaxies. II. (Veilleux+, 2002) J/ApJ/622/772 : Redshift survey of submillimeter galaxies (Chapman+, 2005) J/ApJ/656/770 : Mid-IR spectrum of star-forming galaxies (Smith+, 2007) J/ApJ/660/1556 : Characterization of dusty debris disks (Rhee+, 2007) J/ApJ/681/113 : Swift BAT survey of AGNs (Tueller+, 2008) J/ApJ/674/172 : Oxygen abundances of LIRGs and ULIRGs (Rupke+, 2008) J/ApJS/182/628 : Spitzer quasar and ULIRG evolution study (Veilleux+, 2009) J/ApJ/709/884 : Role of starburst-AGN composites in LIRG mergers (Yuan+, 2010) J/ApJ/715/572 : GOALS UV and FIR properties (Howell+, 2010) J/MNRAS/405/2505 : Nuclear activity in ULIRGs (Nardini+, 2010) J/PASP/122/261 : Herschel Reference Survey Sample (Boselli+, 2010) J/ApJ/768/102 : I-band GALFIT analysis luminous infrared galaxies (Kim+, 2013) J/ApJ/777/156 : Spitzer/IRS spectra GOALS luminous IR galaxies (Inami+, 2013) J/ApJS/206/1 : Mid-IR properties of GOALS nearby LIRGs (Stierwalt+, 2013) J/A+A/565/A128 : Dust SED in HRS nearby galaxies (Ciesla+, 2014) J/ApJ/797/54 : ULIRGs in the AKARI all-sky survey (Kilerci Eser+, 2014) J/MNRAS/441/1017 : Multiwavelength photometry of 34 galaxies (Rowlands+, 2014) J/ApJ/805/31 : IR-radio luminosities & surface densities galaxies (Liu+,2015) J/ApJS/219/8 : SFR for WISE + SDSS spectroscopic galaxies (Chang+, 2015) J/ApJS/229/25 : GOALS sample PACS and SPIRE fluxes (Chu+, 2017) J/ApJ/854/158 : z<0.5 PG quasars IR energy distributions (Shangguan+, 2018) J/ApJ/866/L1 : Dust models & IR spectroscopy obs. AGB stars (Sargent, 2018) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- IRAS Source identifier (IRAS FHHMMm+DDMM) from Chu et al. 2017, J/ApJS/229/25 13 A1 --- f_IRAS a = The fitting is not robust from the visual inspection 15- 20 F6.4 --- z [0.003/0.09] Redshift from NASA/IPAC Extragalactic Database (NED) 22- 26 F5.1 Mpc DL [16/413] Luminosity distance (1) 28 A1 --- Stage Merger stage (2) 30 A1 --- AGN Type of nuclear activity 32- 52 A21 --- Ref References for nuclear activity (3) 54- 58 F5.2 [Msun] logM* [10.1/11.6] Stellar mass derived from optical color and J-band absolute magnitude (4) 60- 63 F4.2 [Msun] e_logM* [0.2/0.3] Error on logM* 65- 69 F5.2 [-] logT9-7 [-3.2/1.5] Optical depth at 9.7µm 71- 74 F4.2 [-] e_logT9-7 [0.01/1.8] Minimum error on logT9-7 76- 79 F4.2 [-] E_logT9-7 [0.01/3] Maximum error on logT9-7 81- 85 F5.2 [10-7W] logLtor [42.3/45.9]? log of IR (8-1000µm) luminosity of the torus derived from the SED fitting in erg/s 87- 90 F4.2 [10-7W] e_logLtor [0.01/2]? Minimum error on logLtor 92- 95 F4.2 [10-7W] E_logLtor [0.01/3]? Maximum error on logLtor 97-101 F5.2 [10-7W] logLgal [44.2/46.1] log of IR (8-1000µm) luminosity of the host galaxy cold dust emission derived from the SED fitting in erg/s (5) 103-106 F4.2 [10-7W] e_logLgal [0.01/0.3] Minimum error on logLgal 108-111 F4.2 [10-7W] E_logLgal [0.01/0.7] Maximum error on logLgal 113-116 F4.2 [-] logUmin [0.3/1.4] Best-fit minimum intensity of the interstellar radiation field relative to that measured in the solar neighborhood (6) 118-121 F4.2 [-] e_logUmin [0/0.22]?=0.00 Minimum error on logUmin 123-126 F4.2 [-] E_logUmin [0/0.82]?=0.00 Maximum error on logUmin 128-131 F4.2 [Msun] logMd [7.0/8.9] Best-fit total dust mass 133-136 F4.2 [Msun] e_logMd [0.01/0.23] Minimum error on logMd 138-141 F4.2 [Msun] E_logMd [0.01/0.23] Maximum error on logMd 143-146 F4.2 [-] logGDR [2/2.2] Gas-to-dust ratio 148-152 F5.2 [Msun] logMgas [9.2/11] Total gas mass including helium and heavier elements 154-157 F4.2 [Msun] e_logMgas [0.2/0.3] Error on logMgas 159-162 F4.2 [Msun/yr] logSFR [0.7/2.6] Star formation rate calculated from logLgal (7) 164-167 F4.2 [Msun/yr] e_logSFR [0.01/0.2] Minimum error on logSFR 169-172 F4.2 [Msun/yr] E_logSFR [0.01/0.4] Maximum error on logSFR -------------------------------------------------------------------------------- Note (1): Derived by correcting the heliocentric velocity for the three-attractor flow model of Mould+ (2000ApJ...529..786M 2000ApJ...529..786M) using Ωm=0.308,ΩΛ =0.692, and H0=67.8km/s/Mpc Planck Collaboration+ (2016A&A...594A..13P 2016A&A...594A..13P). Note (2): Adopted merger stage from Stierwalt+ (2013, J/ApJS/206/1) as follows: n = nonmerger (54 occurrences) a = pre-merger (33 occurrences) b = early-stage merger (29 occurrences) c = mid-stage merger (22 occurrences) d = late-stage merger (52 occurrences) ? = object not included in the reference (3 occurrences). Note (3): References as follows: 1 = Albrecht+ (2007A&A...462..575A 2007A&A...462..575A) 2 = Alonso-Herrero+ (2009A&A...506.1541A 2009A&A...506.1541A) 3 = Alonso-Herrero+ (2012ApJ...744....2A 2012ApJ...744....2A) 4 = Baan+ (1998ApJ...509..633B 1998ApJ...509..633B) 5 = Corbett+ (2003ApJ...583..670C 2003ApJ...583..670C) 6 = Farrah+ (2007ApJ...667..149F 2007ApJ...667..149F) 7 = Goncalves+ (1999, J/A+AS/135/437) 8 = Ho+ (1997, J/ApJS/112/315) 9 = Imanishi (2006AJ....131.2406I 2006AJ....131.2406I) 10 = Iwasawa+ (2011A&A...529A.106I 2011A&A...529A.106I) 11 = Inami+ (2013, J/ApJ/777/156) 12 = Kinney+ (1993ApJS...86....5K 1993ApJS...86....5K) 13 = Koss+ (2013, J/ApJ/765/L26) 14 = Lipari+ (2000AJ....120..645L 2000AJ....120..645L) 15 = Masetti+ (2008A&A...482..113M 2008A&A...482..113M) 16 = Nardini+ (2010, J/MNRAS/405/2505) 17 = Ohyama+ (2015ApJ...805..162O 2015ApJ...805..162O) 18 = Petric+ (2011ApJ...730...28P 2011ApJ...730...28P) 19 = Ricci+ (2016ApJ...819....4R 2016ApJ...819....4R) 20 = Ricci+ (2017MNRAS.468.1273R 2017MNRAS.468.1273R) 21 = Tueller+ (2008, J/ApJ/681/113) 22 = Torres-Alba+ (2018A&A...620A.140T 2018A&A...620A.140T) 23 = Yuan+ (2010, J/ApJ/709/884) 24 = Zink+ (2000ApJS..131..413Z 2000ApJS..131..413Z) Note (4): Bell & de Jong (2001ApJ...550..212B 2001ApJ...550..212B), converted to Chabrier (2003PASP..115..763C 2003PASP..115..763C) initial mass function. Note (5): The best-fit extinction model is applied when calculating both Ltorus and Lgalaxy Note (6): The quoted uncertainties represent the 68% confidence interval determined from the 16th and 84th percentiles of the marginalized posterior probability density function. However, for some objects, the probability density function is not well resolved. Note (7): Using Equation (4) of Kennicutt (1998ARA&A..36..189K 1998ARA&A..36..189K) converted to the Chabrier (2003PASP..115..763C 2003PASP..115..763C) initial mass function by dividing by a factor of 1.5. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- IRAS Source identifier (IRAS FHHMMm+DDMM) 13- 16 F4.2 --- fSL [1/1.4] Scaling factor to match the SL to LL spectra 18- 21 F4.2 --- fIRS [1/1.4] Scaling factor to match the IRS spectra to the W4 band 23- 27 F5.2 [-] logT9-7 [-0.5/1.1] MIR extinction indicated as the optical depth at 9.7µm 29- 32 F4.2 [-] e_logT9-7 [0.01/0.2] Minimum error on logT9-7 34- 37 F4.2 [-] E_logT9-7 [0.01/0.3] Maximum error on logT9-7 39- 42 F4.2 [-] logUmin [0.8/1.4] Umin of the interstellar radiation field (1) 44- 47 F4.2 [Msun] logMd [7/9] log of dust mass 49- 52 F4.2 [Msun] e_logMd [0.01/0.1] Minimum error on logMd 54- 57 F4.2 [Msun] E_logMd [0.01/0.1] Maximum error on logMd 59- 63 F5.2 [10-7W] logLtor [40/46] Log of integrated luminosity of the dust torus at 8-1000µm in erg/s 65- 68 F4.2 [10-7W] e_logLtor [0/1.6] Minimum error on logLtor 70- 73 F4.2 [10-7W] E_logLtor [0.01/1.7] Maximum error on logLtor 75- 79 F5.2 [10-7W] logLgal [44/47] Log of integrated luminosity of the host galaxy cold dust emission at 8-1000µm in erg/s 81- 84 F4.2 [10-7W] e_logLgal [0.01/0.02] Minimum error on logLgal 86- 89 F4.2 [10-7W] E_logLgal [0/0.02] Maximum error on logLgal -------------------------------------------------------------------------------- Note (1): The uncertainties are not resolved for most of the object, so they are not listed. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS] 21-Jan-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line