J/ApJ/870/2 PUSH CCSN to explosions in spherical symmetry. III. (Curtis+, 2019)
PUSHing core-collapse supernovae to explosions in spherical symmetry.
III. Nucleosynthesis yields.
Curtis S., Ebinger K., Frohlich C., Hempel M., Perego A., Liebendorfer M.,
Thielemann F.-K.
<Astrophys. J., 870, 2-2 (2019)>
=2019ApJ...870....2C 2019ApJ...870....2C (SIMBAD/NED BibCode)
ADC_Keywords: Abundances; Models; Supernovae
Keywords: Galaxy: evolution; nuclear reactions, nucleosynthesis, abundances
supernovae: general; supernovae: individual: SN1987A
Abstract:
In a previously presented proof-of-principle study, we established a
parameterized spherically symmetric explosion method (PUSH) that can
reproduce many features of core-collapse supernovae (CCSNe) for a wide
range of pre-explosion models. The method is based on the
neutrino-driven mechanism and follows collapse, bounce, and explosion.
There are two crucial aspects of our model for nucleosynthesis
predictions. First, the mass cut and explosion energy emerge
simultaneously from the simulation (determining, for each stellar
model, the amount of Fe-group ejecta). Second, the interactions
between neutrinos and matter are included consistently (setting the
electron fraction of the innermost ejecta). In the present paper, we
use the successful explosion models from Paper II
(Ebinger+, 2019, J/ApJ/870/1) that include two sets of pre-explosion
models at solar metallicity, with combined masses between 10.8 and
120M☉. We perform systematic nucleosynthesis studies and predict
detailed isotopic yields. The resulting 56Ni ejecta are in overall
agreement with observationally derived values from normal CCSNe. The
Fe-group yields are also in agreement with derived abundances for
metal-poor star HD84937. We also present a comparison of our results
with observational trends in alpha element to iron ratios.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table5.dat 42 111 Isotopic yields in M☉ for all models
table6.dat 96 111 Total pre-decay yields of selected long-lived
radionuclides in M☉ for all models
table7.dat 59 194 Isotopic yields in M☉ for selected WHW02
(Woosley+ 2002RvMP...74.1015W 2002RvMP...74.1015W) models
table8.dat 28 7632 Isotopic yields in M☉ for the WH07
(Woosley & Heger 2007PhR...442..269W 2007PhR...442..269W) set
--------------------------------------------------------------------------------
See also:
J/A+A/416/1117 : Abundances in the early Galaxy (Cayrel+, 2004)
J/ApJ/608/405 : Explosive yields of massive star (Z=0-Z☉) (Chieffi+, 2004)
J/ApJ/724/341 : Nucleosynthesis of massive metal-free stars (Heger+, 2010)
J/ApJS/199/38 : Presupernova evolution (Limongi+, 2012)
J/ApJ/762/25 : The most metal-poor stars in HES and SDSS. I. (Norris+, 2013)
J/ApJ/764/21 : Stellar evolutionary models with 13-120Msun (Chieffi+, 2013)
J/ApJ/769/99 : Nucleosynthetic yields for stars >12M☉ (Brown+, 2013)
J/ApJ/807/171 : SkyMapper Survey metal-poor star spectroscopy (Jacobson+,2015)
J/ApJ/817/53 : Fe-group elemental abundance analysis HD84937 (Sneden+, 2016)
J/ApJ/824/L19 : Carbon-enhanced metal-poor star BD+44493 EWs (Roederer+, 2016)
J/ApJS/237/13 : Models & yields of 13-120M☉ massive stars (Limongi+, 2018)
J/ApJ/870/1 : PUSHing CCSN to explosions. Paper II. (Ebinger+, 2019)
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Model Name of model (G1)
8- 15 E8.2 Msun 56Ni [0.02/0.16] Explosive yields of 56Ni
17- 24 E8.2 Msun 57Ni [0.0003/0.006] Explosive yields of 57Ni
26- 33 E8.2 Msun 58Ni [0.0001/0.02] Explosive yields of 58Ni
35- 42 E8.2 Msun 44Ti [1e-5/9.4e-5] Explosive yields of 44Ti
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Model Name of model (G1)
8- 15 E8.2 Msun 26Al [1.9e-8/5.1e-5] Pre-decay yield of 26Al
17- 24 E8.2 Msun 41Ca [2e-7/2.4e-4] Pre-decay yield of 41Ca
26- 33 E8.2 Msun 44Ti [1e-5/9.4e-5] Pre-decay yield of 44Ti
35- 42 E8.2 Msun 48V [2e-9/5e-7] Pre-decay yield of 48V
44- 51 E8.2 Msun 53Mn [1e-6/7.2e-5] Pre-decay yield of 53Mn
53- 60 E8.2 Msun 60Fe [1e-8/2.7e-4] Pre-decay yield of 60Fe
62- 69 E8.2 Msun 81Kr [3.6e-20/8e-7] Pre-decay yield of 81Kr
71- 78 E8.2 Msun 93Zr [2e-9/2.5e-7] Pre-decay yield of 93Zr
80- 87 E8.2 Msun 97Tc [1e-22/9.1e-11] Pre-decay yield of 97Tc
89- 96 E8.2 Msun 98Tc [6.9e-20/3e-11] Pre-decay yield of 98Tc
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- Ion Name of isotope
7- 14 E8.2 Msun s16.0E [0/0.3] Integrated explosive yields; s16.0 (1)
16- 23 E8.2 Msun s16.0P [0/5.6] Integrated unprocessed progenitor yields;
s16.0 (1)
25- 32 E8.2 Msun s18.8E [0/0.4] Integrated explosive yields; s18.8 (1)
34- 41 E8.2 Msun s18.8P [0/5.8] Integrated unprocessed progenitor yields;
s18.8 (1)
43- 50 E8.2 Msun s21.0E [1.9e-24/0.5] Integrated explosive yields;
s21.0 (1)
52- 59 E8.2 Msun s21.0P [0/4] Integrated unprocessed progenitor yields;
s21.0 (1)
--------------------------------------------------------------------------------
Note (1): Explosive post-processing up to mass coordinates 2.26M☉ (s16.0),
2.33M☉ (s18.8) and 2.73M☉ (s21.0), layers that reach peak
temps ≥1.75GK.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- Model Model identifier (1)
6- 10 A5 --- Ion Name of isotope
12- 19 E8.2 Msun Expl [3.4e-25/0.93] Integrated explosive yields
21- 28 E8.2 Msun Prog [0/6] Integrated unprocessed progenitor yields
--------------------------------------------------------------------------------
Note (1): Post-processed out to model as follows:
w12 = 1.82M☉
w13 = 2.04M☉
w14 = 2.23M☉
w15 = 2.47M☉
w16 = 2.22M☉
w17 = 2.34M☉
w18 = 2.57M☉
w19 = 2.43M☉
w20 = 2.96M☉
w21 = 2.18M☉
w22 = 2.92M☉
w25 = 3.41M☉
w26 = 2.91M☉
w27 = 3.14M☉
w28 = 3.31M☉
w29 = 2.85M☉
w30 = 2.75M☉
w31 = 2.72M☉
w32 = 2.90M☉
w33 = 3.01M☉
w50 = 2.78M☉
w55 = 2.96M☉
w60 = 2.40M☉
w70 = 2.73M☉
w80 = 2.60M☉
w100 = 2.87M☉
w120 = 2.41M☉
--------------------------------------------------------------------------------
Global notes:
Note (G1): We use the same naming convention as in Paper II
(Ebinger+, 2019, J/ApJ/870/1), where the pre-explosion models are
labeled by their zero-age main-sequence (ZAMS) masses and a letter
indicating to which series they belong as in Table 1:
---------------------------------------------------------------------
Series Label Min Mass Max Mass Delta m Ref.
Msun Msun Msun
---------------------------------------------------------------------
WHW02 s 10.8 22.0 0.2 1
22.4 22.6 0.2 1
25.8 28.2 0.2 1
29.0 38.0 1.0 1
40.0 1
75.0 1
WH07 w 12.0 22.0 1.0 2
25.0 33.0 1.0 2
50.0 60.0 5.0 2
70.0 2
80.0 120.0 20.0 2
----------------------------------------------------------------------
Note. All models have solar metallicity. Note that this table only
contains models that explode, not the entire pre-explosion sets.
This corresponds to 84 models from the WHW02 (Ref. 1:
Woosley+ 2002RvMP...74.1015W 2002RvMP...74.1015W) set and 27 models from the WH07
(Ref. 2: Woosley & Heger 2007PhR...442..269W 2007PhR...442..269W) set.
----------------------------------------------------------------------
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Perego et al. Paper I. 2015ApJ...806..275P 2015ApJ...806..275P
Ebinger et al. Paper II. 2019ApJ...870....1E 2019ApJ...870....1E cat J/ApJ/870/1
Ebinger et al. Paper IV. 2020ApJ...888...91E 2020ApJ...888...91E
(End) Prepared by [AAS], Coralie Fix [CDS] 03-Feb-2020