J/ApJ/874/L31 Giant planet bulk and atmosphere metallicities (Thorngren+, 2019)

Connecting giant planet atmosphere and interior modeling: constraints on atmospheric metal enrichment. Thorngren D., Fortney J.J. <Astrophys. J., 874, L31 (2019)> =2019ApJ...874L..31T 2019ApJ...874L..31T
ADC_Keywords: Models, atmosphere; Exoplanets Keywords: methods: numerical ; methods: statistical ; planets and satellites: atmospheres ; planets and satellites: gaseous planets ; planets and satellites: interiors ; planets and satellites: physical evolution Abstract: Atmospheric characterization through spectroscopic analysis, an essential tool of modern exoplanet science, can benefit significantly from the context provided by the interior structure models. In particular, the planet's bulk metallicity, Zp, places an upper limit on the potential atmospheric metallicity. Here we construct interior structure models to derive Zp and atmospheric metallicity upper limits for 403 known transiting giant exoplanets. These limits are low enough that they can usefully inform atmosphere models. Additionally, we argue that comparing Zp to the observed atmospheric metallicity gives a useful measure of how well mixed metals are within the planet. This represents a new avenue for learning about planetary interiors. To aid in the future characterization of new planet discoveries we derive analytic prior predictions of atmosphere metallicity as a function of planet mass, and evaluate the effectiveness of our approach on Jupiter and Saturn. We include log-linear fits for approximating the metallicities of planets not in our catalog. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 112 403 Planetary parameters, orbital parameters, and derived quantites of the planets modeled -------------------------------------------------------------------------------- See also: J/ApJ/709/159 : Relative Ic photometry of WASP-17 (Anderson+, 2010) J/A+A/531/A40 : Transits of WASP-39b (Faedi+, 2011) J/ApJ/728/138 : Follow-up photometry of HAT-P-26 (Hartman+, 2011) J/A+A/542/A4 : WASP-43b thirty eclipses (Gillon+, 2012) J/MNRAS/426/1338 : Transiting planetary system WASP-17 (Southworth+, 2012) J/A+A/549/A134 : 4 new WASP transiting close-in giant planets (Hebrard+, 2013) J/ApJ/809/77 : Transiting Exoplanet Survey Satellite (Sullivan+, 2015) J/ApJ/831/64 : Mass-metallicity relation for giant planets (Thorngren+, 2016) J/ApJS/239/2 : Simulated exoplanets from TESS targets (Barclay+, 2018) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 A18 --- ID Planet identifier 20 A1 --- r_ID Reference(s) for discovery and data (1) 22- 26 F5.2 MJup Mass [0.07/12.9] Mass 28- 31 F4.2 MJup e_Mass [0/2.75] Uncertainty in Mass 33- 36 F4.2 Rjup Rad [0.2/1.99] Radius 38- 41 F4.2 Rjup e_Rad [0/0.6] Uncertainty in Radius 43- 47 F5.2 MW/m2 Flux [0/13.21] Insolation in Giga-ergs/s/cm2 49- 55 F7.2 K Temp [207.06/2762.7] Equilibrium temperature (2) 57- 60 F4.2 AU MajAxis [0.01/2.72] Orbital semi-major axis 62- 65 F4.2 --- Ecc [0/0.93] Orbital eccentricity 67- 73 F7.2 d Period [0.79/1107.6] Orbital period 75- 78 F4.2 --- Zp [0.04/0.99] Planetary bulk metallicity 80- 83 F4.2 --- e_Zp [0.01/0.15] Uncertainty in Zp 85- 93 F9.2 --- zToH [6.7/252660] Planetary atmosphere metallicity (3) 95-105 F11.2 --- e_zToH [2.3/13062480] Uncertainty in zToH 107-112 F6.2 --- B_zToH [11.3/979]? Upper 95th percentile limit in zToH -------------------------------------------------------------------------------- Note (1): Discovery and data sources as follows: a = (HAT-P-26 b) Hartman+ (2011, J/ApJ/728/138); b = (HD 209458 b) Henry+ (1999ApJ...529L..41H 1999ApJ...529L..41H), Southworth (2010MNRAS.408.1689S 2010MNRAS.408.1689S); c = (WASP-12 b) Hebb+ (2009ApJ...693.1920H 2009ApJ...693.1920H), Collins+ (2015, arXiv:1512.00464); d = (WASP-17 b) Anderson+ (2010, J/ApJ/709/159), Southworth+ (2012, J/MNRAS/426/1338); e = (WASP-39 b) Faedi+ (2011A&A...531A..40F 2011A&A...531A..40F); f = (WASP-43 b) Hellier+ (2011A&A...535L...7H 2011A&A...535L...7H), Gillon+ (2012, J/A+A/542/A4); g = (WASP-52 b) Hebrard+ (2013, J/A+A/549/A134); h = (WASP-107 b) Anderson+ (2017A&A...604A.110A 2017A&A...604A.110A). Note (2): For a zero-albedo planet with full atmospheric redistribution of heat. Note (3): Assuming a fully mixed planet (f=1). See Equation 3: Z: H = (1+Y/X)/((Z-1-1)(µzH)) For our calculations, we use µH=2AMU (molecular hydrogen), µz=18AMU (water), and Y/X=0.3383 (Asplund+ 2009ARA&A..47..481A 2009ARA&A..47..481A). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 02-Sep-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line