J/ApJ/879/10    2015-2017 LIGO obs. analysis for 221 pulsars    (Abbott+, 2019)

Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data. Abbott B.P., Abbott R., Abbott T.D., Abraham S., Acernese F., Ackley K., Adams C., Adhikari R.X., Adya V.B., Affeldt C., Agathos M., Agatsuma K., Aggarwal N., Aguiar O.D., Aiello L., Ain A., Ajith P., Allen G., Allocca A., Aloy M.A., Altin P.A., Amato A., Ananyeva A., Anderson S.B., Anderson W.G., Angelova S.V., Antier S., Appert S., Arai K., Araya M.C., Areeda J.S., Arene M., Arnaud N., Ascenzi S., Ashton G., Aston S.M., Astone P., Aubin F., Aufmuth P., AultONeal K., Austin C., Avendano V., Avila-Alvarez A., Babak S., Bacon P., Badaracco F., Bader M.K.M., Bae S., Bailes M., Baker P.T., Baldaccini F., Ballardin G., Ballmer S.W., Banagiri S., Barayoga J.C., Barclay S.E., Barish B.C., Barker D., Barkett K., Barnum S., Barone F., Barr B., Barsotti L., Barsuglia M., Barta D., Bartlett J., Bartos I., Bassiri R., Basti A., Bawaj M., Bayley J.C., Bazzan M., Becsy B., Bejger M., Belahcene I., Bell A.S., Beniwal D., Berger B.K., Bergmann G., Bernuzzi S., Bero J.J., Berry C.P.L., Bersanetti D., Bertolini A., Betzwieser J., Bhandare R., Bidler J., Bilenko I.A., Bilgili S.A., Billingsley G., Birch J., Birney R., Birnholtz O., Biscans S., Biscoveanu S., Bisht A., Bitossi M., Bizouard M.A., Blackburn J.K., Blair C.D., Blair D.G., Blair R.M., Bloemen S., Bode N., Boer M., Boetzel Y., Bogaert G., Bondu F., Bonilla E., Bonnand R., Booker P., Boom B.A., Booth C.D., Bork R., Boschi V., Bose S., Bossie K., Bossilkov V., Bosveld J., Bouffanais Y., Bozzi A., Bradaschia C., Brady P.R., Bramley A., Branchesi M., Brau J.E., Briant T., Briggs J.H., Brighenti F., Brillet A., Brinkmann M., Brisson V., Brockill P., Brooks A.F., Brown D.D., Brunett S., Buikema A., Bulik T., Bulten H.J., Buonanno A., Buskulic D., Buy C., Byer R.L., Cabero M., Cadonati L., Cagnoli G., Cahillane C., Bustillo J.C., Callister T.A., Calloni E., Camp J.B., Campbell W.A., Canepa M., Cannon K.C., Cao H., Cao J., Capocasa E., Carbognani F., Caride S., Carney M.F., Carullo G., Diaz J.C., Casentini C., Caudill S., Cavaglia M., Cavalier F., Cavalieri R., Cella G., Cerda-Duran P., Cerretani G., Cesarini E., Chaibi O., Chakravarti K., Chamberlin S.J., Chan M., Chao S., Charlton P., Chase E.A., Chassande-Mottin E., Chatterjee D., Chaturvedi M., Cheeseboro B.D., Chen H.Y., Chen X., Chen Y., Cheng H.-P., Cheong C.K., Chia H.Y., Chincarini A., Chiummo A., Cho G., Cho H.S., Cho M., Christensen N., Chu Q., Chua S., Chung K.W., Chung S., Ciani G., Ciobanu A.A., Ciolfi R., Cipriano F., Cirone A., Clara F., Clark J.A., Clearwater P., Cleva F., Cocchieri C., Coccia E., Cohadon P.-F., Cohen D., Colgan R., Colleoni M., Collette C.G., Collins C., Cominsky L.R., Constancio M., Conti L., Cooper S.J., Corban P., Corbitt T.R., Cordero- Carrion I., Corley K.R., Cornish N., Corsi A., Cortese S., Costa C.A., Cotesta R., Coughlin M.W., Coughlin S.B., Coulon J.-P., Countryman S.T., Couvares P., Covas P.B., Cowan E.E., Coward D.M., Cowart M.J., Coyne D.C., Coyne R., Creighton J.D.E., Creighton T.D., Cripe J., Croquette M., Crowder S.G., Cullen T.J., Cumming A., Cunningham L., Cuoco E., Canton T.D., Dalya G., Danilishin S.L., D'Antonio S., Danzmann K., Dasgupta A., Da Silva Costa C.F., Datrier L.E.H., Dattilo V., Dave I., Davier M., Davis D., Daw E.J., DeBra D., Deenadayalan M., Degallaix J., De Laurentis M., Deleglise S., Del Pozzo W., DeMarchi L.M., Demos N., Dent T., De Pietri R., Derby J., De Rosa R., De Rossi C., DeSalvo R., de Varona O., Dhurandhar S., Diaz M.C., Dietrich T., Di Fiore L., Di Giovanni M., Di Girolamo T., Di Lieto A., Ding B., Di Pace S., Di Palma I., Di Renzo F., Dmitriev A., Doctor Z., Donovan F., Dooley K.L., Doravari S., Dorrington I., Downes T.P., Drago M., Driggers J.C., Du Z., Ducoin J.-G., Dupej P., Dwyer S.E., Easter P.J., Edo T.B., Edwards M.C., Effler A., Ehrens P., Eichholz J., Eikenberry S.S., Eisenmann M., Eisenstein R.A., Essick R.C., Estelles H., Estevez D., Etienne Z.B., Etzel T., Evans M., Evans T.M., Fafone V., Fair H., Fairhurst S., Fan X., Farinon S., Farr B., Farr W.M., Fauchon- Jones E.J., Favata M., Fays M., Fazio M., Fee C., Feicht J., Fejer M.M., Feng F., Fernandez-Galiana A., Ferrante I., Ferreira E.C., Ferreira T.A., Ferrini F., Fidecaro F., Fiori I., Fiorucci D., Fishbach M., Fisher R.P., Fishner J.M., Fitz-Axen M., Flaminio R., Fletcher M., Flynn E., Fong H., Font J.A., Forsyth P.W.F., Fournier J.-D., Frasca S., Frasconi F., Frei Z., Freise A., Frey R., Frey V., Fritschel P., Frolov V.V., Fulda P., Fyffe M., Gabbard H.A., Gadre B.U., Gaebel S.M., Gair J.R., Gammaitoni L., Ganija M.R., Gaonkar S.G., Garcia A., Garcia-Quiros C., Garufi F., Gateley B., Gaudio S., Gaur G., Gayathri V., Gemme G., Genin E., Gennai A., George D., George J., Gergely L., Germain V., Ghonge S., Ghosh A., Ghosh A., Ghosh S., Giacomazzo B., Giaime J.A., Giardina K.D., Giazotto A., Gill K., Giordano G., Glover L., Godwin P., Goetz E., Goetz R., Goncharov B., Gonzalez G., Castro J.M.G., Gopakumar A., Gorodetsky M.L., Gossan S.E., Gosselin M., Gouaty R., Grado A., Graef C., Granata M., Grant A., Gras S., Grassia P., Gray C., Gray R., Greco G., Green A.C., Green R., Gretarsson E.M., Groot P., Grote H., Grunewald S., Gruning P., Guidi G.M., Gulati H.K., Guo Y., Gupta A., Gupta M.K., Gustafson E.K., Gustafson R., Haegel L., Halim O., Hall B.R., Hall E.D., Hamilton E.Z., Hammond G., Haney M., Hanke M.M., Hanks J., Hanna C., Hannam M.D., Hannuksela O.A., Hanson J., Hardwick T., Haris K., Harms J., Harry G.M., Harry I.W., Haster C.-J., Haughian K., Hayes F.J., Healy J., Heidmann A., Heintze M.C., Heitmann H., Hello P., Hemming G., Hendry M., Heng I.S., Hennig J., Heptonstall A.W., Vivanco F.H., Heurs M., Hild S., Hinderer T., Ho W.C.G., Hoak D., Hochheim S., Hofman D., Holgado A.M., Holland N.A., Holt K., Holz D.E., Hopkins P., Horst C., Hough J., Howell E.J., Hoy C.G., Hreibi A., Huerta E.A., Huet D., Hughey B., Hulko M., Husa S., Huttner S.H., Huynh- Dinh T., Idzkowski B., Iess A., Ingram C., Inta R., Intini G., Irwin B., Isa H.N., Isac J.-M., Isi M., Iyer B.R., Izumi K., Jacqmin T., Jadhav S.J., Jani K., Janthalur N.N., Jaranowski P., Jenkins A.C., Jiang J., Johnson D.S., Jones A.W., Jones D.I., Jones R., Jonker R.J.G., Ju L., Junker J., Kalaghatgi C.V., Kalogera V., Kamai B., Kandhasamy S., Kang G., Kanner J.B., Kapadia S.J., Karki S., Karvinen K.S., Kashyap R., Kasprzack M., Katsanevas S., Katsavounidis E., Katzman W., Kaufer S., Kawabe K., Keerthana N.V., Kefelian F., Keitel D., Kennedy R., Key J.S., Khalili F.Y., Khan H., Khan I., Khan S., Khan Z., Khazanov E.A., Khursheed M., Kijbunchoo N., Kim C., Kim J.C., Kim K., Kim W., Kim W.S., Kim Y.-M., Kimball C., King E.J., King P.J., Kinley-Hanlon M., Kirchhoff R., Kissel J.S., Kleybolte L., Klika J.H., Klimenko S., Knowles T.D., Koch P., Koehlenbeck S.M., Koekoek G., Koley S., Kondrashov V., Kontos A., Koper N., Korobko M., Korth W.Z., Kowalska I., Kozak D.B., Kringel V., Krishnendu N., Krolak A., Kuehn G., Kumar A., Kumar P., Kumar R., Kumar S., Kuo L., Kutynia A., Kwang S., Lackey B.D., Lai K.H., Lam T.L., Landry M., Lane B.B., Lang R.N., Lange J., Lantz B., Lanza R.K., Lartaux-Vollard A., Lasky P.D., Laxen M., Lazzarini A., Lazzaro C., Leaci P., Leavey S., Lecoeuche Y.K., Lee C.H., Lee H.K., Lee H.M., Lee H.W., Lee J., Lee K., Lehmann J., Lenon A., Leroy N., Letendre N., Levin Y., Li J., Li K.J.L., Li T.G.F., Li X., Lin F., Linde F., Linker S.D., Littenberg T.B., Liu J., Liu X., Lo R.K.L., Lockerbie N.A., London L.T., Longo A., Lorenzini M., Loriette V., Lormand M., Losurdo G., Lough J.D., Lousto C.O., Lovelace G., Lower M.E., Luck H., Lumaca D., Lundgren A.P., Lynch R., Ma Y., Macas R., Macfoy S., MacInnis M., Macleod D.M., Macquet A., Magana-Sandoval F., Magana Zertuche L., Magee R.M., Majorana E., Maksimovic I., Malik A., Man N., Mandic V., Mangano V., Mansell G.L., Manske M., Mantovani M., Marchesoni F., Marion F., Marka S., Marka Z., Markakis C., Markosyan A.S., Markowitz A., Maros E., Marquina A., Marsat S., Martelli F., Martin I.W., Martin R.M., Martynov D.V., Mason K., Massera E., Masserot A., Massinger T.J., Masso- Reid M., Mastrogiovanni S., Matas A., Matichard F., Matone L., Mavalvala N., Mazumder N., McCann J.J., McCarthy R., McClelland D.E., McCormick S., McCuller L., McGuire S.C., McIver J., McManus D.J., McRae T., McWilliams S.T., Meacher D., Meadors G.D., Mehmet M., Mehta A.K., Meidam J., Melatos A., Mendell G., Mercer R.A., Mereni L., Merilh E.L., Merzougui M., Meshkov S., Messenger C., Messick C., Metzdorff R., Meyers P.M., Miao H., Michel C., Middleton H., Mikhailov E.E., Milano L., Miller A.L., Miller A., Millhouse M., Mills J.C., Milovich-Goff M.C., Minazzoli O., Minenkov Y., Mishkin A., Mishra C., Mistry T., Mitra S., Mitrofanov V.P., Mitselmakher G., Mittleman R., Mo G., Moffa D., Mogushi K., Mohapatra S.R.P., Montani M., Moore C.J., Moraru D., Moreno G., Morisaki S., Mours B., Mow-Lowry C.M., Mukherjee A., Mukherjee D., Mukherjee S., Mukund N., Mullavey A., Munch J., Muniz E.A., Muratore M., Murray P.G., Nagar A., Nardecchia I., Naticchioni L., Nayak R.K., Neilson J., Nelemans G., Nelson T.J.N., Nery M., Neunzert A., Ng K.Y., Ng S., Nguyen P., Nichols D., Nissanke S., Nocera F., North C., Nuttall L.K., Obergaulinger M., Oberling J., O'Brien B.D., O'Dea G.D., Ogin G.H., Oh J.J., Oh S.H., Ohme F., Ohta H., Okada M.A., Oliver M., Oppermann P., Oram R.J., O'Reilly B., Ormiston R.G., Ortega L.F., O'Shaughnessy R., Ossokine S., Ottaway D.J., Overmier H., Owen B.J., Pace A.E., Pagano G., Page M.A., Pai A., Pai S.A., Palamos J.R., Palashov O., Palomba C., Pal-Singh A., Pan H.-W., Pang B., Pang P.T.H., Pankow C., Pannarale F., Pant B.C., Paoletti F., Paoli A., Parida A., Parker W., Pascucci D., Pasqualetti A., Passaquieti R., Passuello D., Patil M., Patricelli B., Pearlstone B.L., Pedersen C., Pedraza M., Pedurand R., Pele A., Penn S., Perez C.J., Perreca A., Pfeiffer H.P., Phelps M., Phukon K.S., Piccinni O.J., Pichot M., Piergiovanni F., Pillant G., Pinard L., Pirello M., Pitkin M., Poggiani R., Pong D.Y.T., Ponrathnam S., Popolizio P., Porter E.K., Powell J., Prajapati A.K., Prasad J., Prasai K., Prasanna R., Pratten G., Prestegard T., Privitera S., Prodi G.A., Prokhorov L.G., Puncken O., Punturo M., Puppo P., Purrer M., Qi H., Quetschke V., Quinonez P.J., Quintero E.A., Quitzow-James R., Raab F.J., Radkins H., Radulescu N., Raffai P., Raja S., Rajan C., Rajbhandari B., Rakhmanov M., Ramirez K.E., Ramos-Buades A., Rana J., Rao K., Rapagnani P., Raymond V., Razzano M., Read J., Regimbau T., Rei L., Reid S., Reitze D.H., Ren W., Ricci F., Richardson C.J., Richardson J.W., Ricker P.M., Riles K., Rizzo M., Robertson N.A., Robie R., Robinet F., Rocchi A., Rolland L., Rollins J.G., Roma V.J., Romanelli M., Romano R., Romel C.L., Romie J.H., Rose K., Rosinska D., Rosofsky S.G., Ross M.P., Rowan S., Rudiger A., Ruggi P., Rutins G., Ryan K., Sachdev S., Sadecki T., Sakellariadou M., Salconi L., Saleem M., Samajdar A., Sammut L., Sanchez E.J., Sanchez L.E., Sanchis- Gual N., Sandberg V., Sanders J.R., Santiago K.A., Sarin N., Sassolas B., Saulson P.R., Sauter O., Savage R.L., Schale P., Scheel M., Scheuer J., Schmidt P., Schnabel R., Schofield R.M.S., Schonbeck A., Schreiber E., Schulte B.W., Schutz B.F., Schwalbe S.G., Scott J., Scott S.M., Seidel E., Sellers D., Sengupta A.S., Sennett N., Sentenac D., Sequino V., Sergeev A., Setyawati Y., Shaddock D.A., Shaffer T., Shahriar M.S., Shaner M.B., Shao L., Sharma P., Shawhan P., Shen H., Shink R., Shoemaker D.H., Shoemaker D.M., ShyamSundar S., Siellez K., Sieniawska M., Sigg D., Silva A.D., Singer L.P., Singh N., Singhal A., Sintes A.M., Sitmukhambetov S., Skliris V., Slagmolen B.J.J., Slaven-Blair T.J., Smith J.R., Smith R.J.E., Somala S., Son E.J., Sorazu B., Sorrentino F., Souradeep T., Sowell E., Spencer A.P., Srivastava A.K., Srivastava V., Staats K., Stachie C., Standke M., Steer D.A., Steinke M., Steinlechner J., Steinlechner S., Steinmeyer D., Stevenson S.P., Stocks D., Stone R., Stops D.J., Strain K.A., Stratta G., Strigin S.E., Strunk A., Sturani R., Stuver A.L., Sudhir V., Summerscales T.Z., Sun L., Sunil S., Suresh J., Sutton P.J., Swinkels B.L., Szczepanczyk M.J., Tacca M., Tait S.C., Talbot C., Talukder D., Tanner D.B., Tapai M., Taracchini A., Tasson J.D., Taylor R., Thies F., Thomas M., Thomas P., Thondapu S.R., Thorne K.A., Thrane E., Tiwari S., Tiwari S., Tiwari V., Toland K., Tonelli M., Tornasi Z., Torres-Forne A., Torrie C.I., Toyra D., Travasso F., Traylor G., Tringali M.C., Trovato A., Trozzo L., Trudeau R., Tsang K.W., Tse M., Tso R., Tsukada L., Tsuna D., Tuyenbayev D., Ueno K., Ugolini D., Unnikrishnan C.S., Urban A.L., Usman S.A., Vahlbruch H., Vajente G., Valdes G., van Bakel N., van Beuzekom M., van den Brand J.F.J., Van Den Broeck C., Vander-Hyde D.C., van Heijningen J.V., van der Schaaf L., van Veggel A.A., Vardaro M., Varma V., Vass S., Vasuth M., Vecchio A., Vedovato G., Veitch J., Veitch P.J., Venkateswara K., Venugopalan G., Verkindt D., Vetrano F., Vicere A., Viets A.D., Vine D.J., Vinet J.-Y., Vitale S., Vo T., Vocca H., Vorvick C., Vyatchanin S.P., Wade A.R., Wade L.E., Wade M., Walet R., Walker M., Wallace L., Walsh S., Wang G., Wang H., Wang J.Z., Wang W.H., Wang Y.F., Ward R.L., Warden Z.A., Warner J., Was M., Watchi J., Weaver B., Wei L.-W., Weinert M., Weinstein A.J., Weiss R., Wellmann F., Wen L., Wessel E.K., Wessels P., Westhouse J.W., Wette K., Whelan J.T., Whiting B.F., Whittle C., Wilken D.M., Williams D., Williamson A.R., Willis J.L., Willke B., Wimmer M.H., Winkler W., Wipf C.C., Wittel H., Woan G., Woehler J., Wofford J.K., Worden J., Wright J.L., Wu D.S., Wysocki D.M., Xiao L., Yamamoto H., Yancey C.C., Yang L., Yap M.J., Yazback M., Yeeles D.W., Yu H., Yu H., Yuen S.H.R., Yvert M., Zadrozny A.K., Zanolin M., Zelenova T., Zendri J.-P., Zevin M., Zhang J., Zhang L., Zhang T., Zhao C., Zhou M., Zhou Z., Zhu X.J., Zucker M.E., Zweizig J., Arzoumanian Z., Bogdanov S., Cognard I., Corongiu A., Enoto T., Freire P., Gendreau K.C., Guillemot L., Harding A.K., Jankowski F., Keith M.J., Kerr M., Lyne A., Palfreyman J., Possenti A., Ridolfi A., Stappers B., Theureau G., Weltervrede P. <Astrophys. J., 879, 10 (2019)> =2019ApJ...879...10A 2019ApJ...879...10A
ADC_Keywords: Pulsars; Gravitational wave; Stars, distances Keywords: gravitational waves ; pulsars: general ; stars: neutron Abstract: We present a search for gravitational waves from 221 pulsars with rotation frequencies ≳10Hz. We use advanced LIGO data from its first and second observing runs spanning 2015-2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l=m=2 mass quadrupole mode, with a frequency at twice that of the pulsar's rotation, and the l=2, m=1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l=m=2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars' spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711-6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038kg.m2 for the star's moment of inertia, and imply a gravitational-wave-derived upper limit on the star's ellipticity of 1.2x10-8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars. Description: The data analyzed in this paper consist of those obtained by the two LIGO detectors (the LIGO Hanford Observatory, commonly abbreviated to LHO or H1, and the LIGO Livingston Observatory, abbreviated to LLO or L1) taken during their first and second observing runs (O1 and O2, respectively) in their advanced detector configurations. Data from O1 between 2015 September 11 (with start times of 01:25:03 UTC and 18:29:03 UTC for LHO and LLO, respectively) and 2016 January 19 at 17:07:59 UTC have been used for a total of 79 and 66 days of observing time for LHO and LLO, respectively. Data from O2 between 2016 November 30 at 16:00:00 UTC and 2017 August 25 at 22:00:00 UTC, for both LHO and LLO, have been used. For this analysis we have gathered ephemerides for 221 pulsars based on radio, X-ray, and γ-ray observations. The observations have used the 42ft telescope and Lovell telescope at Jodrell Bank (UK), the Mount Pleasant Observatory 26m telescope (Australia), the Parkes radio telescope (Australia), the Nancay Decimetric Radio Telescope (France), the Molonglo Observatory Synthesis Telescope (Australia), the Arecibo Observatory (Puerto Rico), the Fermi Large Area Telescope, and the Neutron Star Interior Composition Explorer (NICER). See Section 2.2. During the course of the O2 period, five pulsars exhibited timing glitches. The Vela pulsar (J0835-4510) glitched on 2016 December 12 at 11:36 UTC, and the Crab pulsar (J0534+2200) showed a small glitch on 2017 March 27 at around 22:04 UTC. PSR J1028-5819 glitched some time around 2017 May 29, with a best-fit glitch time of 01:36 UTC. PSRJ1718-3825 experienced a small glitch around 2017 July 2. PSRJ0205+6449 experienced four glitches over the period between the start of O1 and the end of O2, with glitch epochs of 2015 November 19, 2016 July 1, 2016 October 19, and 2017 May 27. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 409 221 Upper limits of gravitational wave amplitude and other derived quantities from erratum published in 2020, ApJ, 899, 170 -------------------------------------------------------------------------------- See also: B/psr : ATNF Pulsar Catalogue (Manchester+, 2005) J/MNRAS/353/1311 : Long-term timing observations of 374 pulsars (Hobbs+, 2004) J/ApJ/602/264 : Proper motions & radial velocities in M15 (McNamara+, 2004) J/AJ/133/1287 : JHK photom. of 24 Gal. globular clusters (Valenti+, 2007) J/ApJ/713/671 : Gravitational waves from pulsars (Abbott+, 2010) J/MNRAS/402/1729 : JHK photometry of 36 Gal. globular clusters (Valenti+ 2010) J/MNRAS/414/1679 : 315 glitches in the rotation of pulsars (Espinoza+, 2011) J/ApJ/763/80 : GBT 350MHz survey. I. 13 new pulsars (Boyles+, 2013) J/ApJ/785/119 : Gravitational waves from known pulsars (Aasi+, 2014) J/MNRAS/458/3341 : 42 ms pulsars high-precision timing (Desvignes+, 2016) J/ApJ/839/12 : Gravitational waves search from known PSR (Abbott+, 2017) J/ApJS/247/33 : Fermi LAT fourth source catalog (4FGL) (Abdollahi+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- PSR Pulsar J2000 coordinate name 13- 17 F5.1 Hz Freq [9/707.3] Pulsar rotation frequency 19- 26 E8.2 s/s Prot/dt [4.4e-22/4.3e-13]? Intrinsic rotational period derivative (1) 28- 29 A2 --- r_Prot/dt Reference note for the period derivative value (2) 31- 35 F5.2 kpc Dist [0.1/13.81]? Distance to the pulsar 37- 38 A2 --- r_Dist Reference note for the pulsar distance (2) 40- 47 E8.2 --- H0sd [1.2e-28/3.4e-24]? Spin-down limit of gravitational wave amplitude 49- 56 E8.2 --- C21ULB [1.2e-26/8.5e-23]? Observed 95% credible upper limit on amplitude from the l=2, m=1 mode using the Bayesian analysis (3) 58- 65 E8.2 --- C21ULrB [5.8e-26/1.5e-23]? Observed 95% credible upper limit on amplitude from the l=2, m=1 mode using restricted orientation priors using the Bayesian analysis (3) 67- 74 E8.2 --- C21ULF [2.5e-26/2.1e-23]? Observed 95% confidence upper limit on amplitude from the l=2, m=1 mode using the F-statistic analysis (3) 76- 83 E8.2 --- C21ULrG [1e-25/1.1e-23]? Observed 95% confidence upper limit on amplitude from the l=2, m=1 mode using restricted orientation priors using the G-statistic analysis (3) 85- 92 E8.2 --- C21UL5nV [1.2e-26/10e-25]? Observed 95% confidence upper limit on amplitude from the l=2, m=1 mode using the 5n-vector analysis 94-101 E8.2 --- C21ULr5nV [1.3e-25/2.1e-25]? Observed 95% confidence upper limit on amplitude from the l=2, m=1 mode using restricted orientation priors using the 5n-vector analysis 103-110 E8.2 --- C22ULB [4e-27/1.7e-25]? Observed 95% credible upper limit on amplitude from the l=m=2 mode using the Bayesian analysis (3) 112-119 E8.2 --- C22ULrB [7.2e-27/1.1e-25]? Observed 95% credible upper limit on amplitude from the l=m=2 mode using restricted orientation priors using the Bayesian analysis (3) 121-128 E8.2 --- C22ULF [5.6e-27/1.1e-25]? Observed 95% confidence upper limit on amplitude from the l=m=2 mode using the F-statistic analysis (3) 130-137 E8.2 --- C22ULrG [1.1e-26/8.8e-26]? Observed 95% confidence upper limit on amplitude from the l=m=2 mode using restricted orientation priors using the G-statistic analysis (3) 139-146 E8.2 --- H0ULB [8.8e-27/7.3e-25] Observed 95% credible upper limit on amplitude from the l=m=2 mode using the Bayesian analysis (4) 148-155 E8.2 --- H0ULrB [1.4e-26/2.7e-25]? Observed 95% credible upper limit on amplitude from the l=m=2 mode using restricted orientation priors using the Bayesian analysis (4) 157-164 E8.2 --- H0ULF [1.1e-26/2.8e-25]? Observed 95% confidence upper limit on amplitude from the l=m=2 mode using the F-statistic analysis (4) 166-173 E8.2 --- H0ULrG [1.3e-26/2e-25]? Observed 95% confidence upper limit on amplitude from the l=m=2 mode using restricted orientation priors using the G-statistic analysis (4) 175-182 E8.2 --- H0UL5nV [1.2e-26/4.7e-25]? Observed 95% confidence upper limit on amplitude from the l=m=2 mode using the 5n-vector analysis (4) 184-191 E8.2 --- H0ULr5nV [1.9e-26/2.4e-25]? Observed 95% confidence upper limit on amplitude from the l=m=2 mode using restricted orientation priors using the 5n-vector analysis (4) 193-200 E8.2 kg.m2 Q22ULB [1E+30/1.62e+36]? Derived 95% credible upper limit on the l=m=2 mass quadrupole moment using the Bayesian analysis (4) 202-209 E8.2 kg.m2 Q22ULrB [6.3E+32/1.13e+34]? Derived 95% credible upper limit on the l=m=2 mass quadrupole moment using restricted orientation priors using the Bayesian analysis (4) 211-218 E8.2 kg.m2 Q22ULF [9.1e+32/7.02e+34]? Derived 95% confidence upper limit on the l=m=2 mass quadrupole moment using the F-statistic analysis (4) 220-227 E8.2 kg.m2 Q22ULrG [5.4e+32/8.4e+33]? Derived 95% confidence upper limit on the l=m=2 mass quadrupole moment using restricted orientation priors using the G-statistic analysis (4) 229-236 E8.2 kg.m2 Q22UL5nV [9E+29/1.45e+35]? Derived 95% confidence upper limit on the l=m=2 mass quadrupole moment using the 5n-vector analysis (4) 238-245 E8.2 kg.m2 Q22ULr5nV [1.2E+33/9.92e+33]? Derived 95% confidence upper limit on the l=m=2 mass quadrupole moment using restricted orientation priors using the 5n-vector analysis (4) 247-254 E8.2 --- ellULB [5.7e-9/0.021]? Derived 95% credible upper limit on the fiducial ellipticity using the Bayesian analysis (4) 256-263 E8.2 --- ellULrB [7.8e-6/0.00015]? Derived 95% credible upper limit on the fiducial ellipticity using restricted orientation priors using the Bayesian analysis (4) 265-272 E8.2 --- ellULF [6e-8/0.001]? Derived 95% confidence upper limit on the fiducial ellipticity using the F-statistic analysis (4) 274-281 E8.2 --- ellULrG [6.9e-6/0.00011]? Derived 95% confidence upper limit on the fiducial ellipticity using restricted orientation priors using the G-statistic analysis (4) 283-290 E8.2 --- ellUL5nV [1.1e-8/0.002]? Derived 95% confidence upper limit on the fiducial ellipticity using the 5n-vector analysis (4) 292-299 E8.2 --- ellULr5nV [1.5e-5/0.00013]? Derived 95% confidence upper limit on the fiducial ellipticity using restricted orientation priors using the 5n-vector analysis (4) 301-308 F8.3 --- H0ULB/H0sd [0.013/3188]? Ratio H0UL_BAYES/H0SD (4) 310-317 F8.3 --- H0ULrB/H0sd [0.01/0.2]? Ratio H0ULResBayes/H0SD (4) 319-326 F8.3 --- H0ULF/H0sd [0.015/7.3]? Ratio H0ULFStat/H0SD (4) 328-335 F8.3 --- H0ULrG/H0sd [0.009/0.06]? Ratio H0ULResGStat/H0SD (4) 337-344 F8.3 --- H0UL5nV/H0sd [0.02/4.6]? Ratio H0UL5nVec/H0SD (4) 346-353 F8.3 --- H0ULr5nV/H0sd [0.02/0.3]? Ratio H0ULRes5nVec/H0SD (4) 355-358 F4.1 [-] logOl2m12B [-6.2/-1.8] Base-10 logarithm of odds for coherent signal versus incoherent signal for the Bayesian analysis (3) 360-363 F4.1 [-] logOl2m12rB [-5.3/-3.1]? Base-10 logarithm of odds for coherent signal versus incoherent signal using restricted orientation priors for the Bayesian analysis (3) 365-368 F4.1 [-] logOl2m2B [-3.4/-0.5] Base-10 logarithm of odds for coherent signal versus incoherent signal for the Bayesian analysis (4) 370-373 F4.1 [-] logOl2m2rB [-2.9/-2.1]? Base-10 logarithm of odds for coherent signal versus incoherent signal using restricted orientation priors for the Bayesian analysis (4) 375-379 F5.2 --- P5nVl2m2 [0.13/0.99]? P-value for the null hypothesis in the 5n-vector analysis for the l=m=2 mode 381-385 F5.2 --- P5nVl2m1 [0.06/0.8]? P-value for the null hypothesis in the 5n-vector analysis for the l=2, m=1 mode 387-391 F5.2 --- FAPl2m2F [0.26/0.8]? False alarm probability in the F-statistic analysis for the l=2, m=2 mode 393-397 F5.2 --- FAPl2m2G [0.75/0.87]? False alarm probability in the G-statistic analysis for the l=2, m=2 mode 399-403 F5.2 --- FAPl2m1F [0.04/0.8]? False alarm probability in the F-statistic analysis for the l=2, m=1 mode 405-409 F5.2 --- FAPl2m1G [0.18/0.75]? False alarm probability in the G-statistic analysis for the l=2, m=1 mode ------------------------------------------------------------------------------- Note (1): In cases where the intrinsic period derivative exists in the literature, with an associated error, those values are shown. Otherwise, if a transverse velocity can be calculated from proper motion values within the ATN Pulsar Catalogue and a distance is known, then they are used to correct for the Shklovskii and Galactic rotation effects on the observed period derivative to derive the intrinsic value shown. In cases where this intrinsic period derivate is negative no value is give and no spin-down limit is calculated. For some pulsars within globular clusters the period derivative is a proxy value calculated by assuming that the star has a characteristic age of 10+9 years and a braking index of n=5. For other pulsars the observed period derivative is given. Note (2): Bibcode references for the period derivatives and pulsar distances. Reference code as follows: a = 2018ApJS..235...37A 2018ApJS..235...37A b = 2017ApJ...835...29Y 2017ApJ...835...29Y c = 2013A&A...560A..18K 2013A&A...560A..18K d = 2014MNRAS.444.1859V 2014MNRAS.444.1859V e = 2013Sci...340..448A 2013Sci...340..448A f = 2016MNRAS.455.1751R 2016MNRAS.455.1751R g = 2016MNRAS.458.3341D 2016MNRAS.458.3341D h = 2016MNRAS.455.3806B 2016MNRAS.455.3806B i = 2009Sci...323.1327D 2009Sci...323.1327D j = 2003ApJ...596.1137D 2003ApJ...596.1137D k = 2018arXiv181206262M 2018arXiv181206262M l = 2017ApJ...839...12A 2017ApJ...839...12A m = 2012ApJ...755...39V 2012ApJ...755...39V n = 2013ApJ...763...80B 2013ApJ...763...80B o = 2013ApJ...778..120H 2013ApJ...778..120H p = 2014ApJ...787...82F 2014ApJ...787...82F q = 2015ApJ...799..165B 2015ApJ...799..165B r = 2018ApJ...855..122V 2018ApJ...855..122V s = 2018arXiv181206262M 2018arXiv181206262M t = 2012MNRAS.423.3328F 2012MNRAS.423.3328F u = 2013MNRAS.430..571E 2013MNRAS.430..571E v = 2007A&A...470.1043O 2007A&A...470.1043O w = 2014MNRAS.443.2183F 2014MNRAS.443.2183F x = 1996yCat.7195....0H 1996yCat.7195....0H y = 2010MNRAS.402.1729V 2010MNRAS.402.1729V z = 2014ApJ...795..168M 2014ApJ...795..168M aa = 2007AJ....133.1287V 2007AJ....133.1287V bb = 1991AJ....102..152R 1991AJ....102..152R cc = 2011RAA....11..824W 2011RAA....11..824W dd = 2011ApJ...729L..16G 2011ApJ...729L..16G ee = 2003A&A...408..529G 2003A&A...408..529G ff = 2004ApJ...602..264M 2004ApJ...602..264M gg = 2013ApJ...770..145D 2013ApJ...770..145D hh = 2001ApJ...547..323H 2001ApJ...547..323H ii = 2018MNRAS.475..469S 2018MNRAS.475..469S jj = 2011ApJ...743L..26R 2011ApJ...743L..26R kk = 2014MNRAS.439.1865N 2014MNRAS.439.1865N Note (3): These results have been produced using a coherent analysis including both the l=2, m=1 mode and the l=m=2 mode. Note (4): These results have been produced using an analysis only including the l=m=2 mode. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 07-Dec-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line