J/ApJ/879/10 2015-2017 LIGO obs. analysis for 221 pulsars (Abbott+, 2019)
Searches for gravitational waves from known pulsars at two harmonics in
2015-2017 LIGO data.
Abbott B.P., Abbott R., Abbott T.D., Abraham S., Acernese F., Ackley K.,
Adams C., Adhikari R.X., Adya V.B., Affeldt C., Agathos M., Agatsuma K.,
Aggarwal N., Aguiar O.D., Aiello L., Ain A., Ajith P., Allen G., Allocca A.,
Aloy M.A., Altin P.A., Amato A., Ananyeva A., Anderson S.B., Anderson W.G.,
Angelova S.V., Antier S., Appert S., Arai K., Araya M.C., Areeda J.S.,
Arene M., Arnaud N., Ascenzi S., Ashton G., Aston S.M., Astone P., Aubin F.,
Aufmuth P., AultONeal K., Austin C., Avendano V., Avila-Alvarez A.,
Babak S., Bacon P., Badaracco F., Bader M.K.M., Bae S., Bailes M.,
Baker P.T., Baldaccini F., Ballardin G., Ballmer S.W., Banagiri S.,
Barayoga J.C., Barclay S.E., Barish B.C., Barker D., Barkett K., Barnum S.,
Barone F., Barr B., Barsotti L., Barsuglia M., Barta D., Bartlett J.,
Bartos I., Bassiri R., Basti A., Bawaj M., Bayley J.C., Bazzan M., Becsy B.,
Bejger M., Belahcene I., Bell A.S., Beniwal D., Berger B.K., Bergmann G.,
Bernuzzi S., Bero J.J., Berry C.P.L., Bersanetti D., Bertolini A.,
Betzwieser J., Bhandare R., Bidler J., Bilenko I.A., Bilgili S.A.,
Billingsley G., Birch J., Birney R., Birnholtz O., Biscans S.,
Biscoveanu S., Bisht A., Bitossi M., Bizouard M.A., Blackburn J.K.,
Blair C.D., Blair D.G., Blair R.M., Bloemen S., Bode N., Boer M.,
Boetzel Y., Bogaert G., Bondu F., Bonilla E., Bonnand R., Booker P.,
Boom B.A., Booth C.D., Bork R., Boschi V., Bose S., Bossie K., Bossilkov V.,
Bosveld J., Bouffanais Y., Bozzi A., Bradaschia C., Brady P.R., Bramley A.,
Branchesi M., Brau J.E., Briant T., Briggs J.H., Brighenti F., Brillet A.,
Brinkmann M., Brisson V., Brockill P., Brooks A.F., Brown D.D., Brunett S.,
Buikema A., Bulik T., Bulten H.J., Buonanno A., Buskulic D., Buy C.,
Byer R.L., Cabero M., Cadonati L., Cagnoli G., Cahillane C., Bustillo J.C.,
Callister T.A., Calloni E., Camp J.B., Campbell W.A., Canepa M.,
Cannon K.C., Cao H., Cao J., Capocasa E., Carbognani F., Caride S.,
Carney M.F., Carullo G., Diaz J.C., Casentini C., Caudill S., Cavaglia M.,
Cavalier F., Cavalieri R., Cella G., Cerda-Duran P., Cerretani G.,
Cesarini E., Chaibi O., Chakravarti K., Chamberlin S.J., Chan M., Chao S.,
Charlton P., Chase E.A., Chassande-Mottin E., Chatterjee D., Chaturvedi M.,
Cheeseboro B.D., Chen H.Y., Chen X., Chen Y., Cheng H.-P., Cheong C.K.,
Chia H.Y., Chincarini A., Chiummo A., Cho G., Cho H.S., Cho M.,
Christensen N., Chu Q., Chua S., Chung K.W., Chung S., Ciani G.,
Ciobanu A.A., Ciolfi R., Cipriano F., Cirone A., Clara F., Clark J.A.,
Clearwater P., Cleva F., Cocchieri C., Coccia E., Cohadon P.-F., Cohen D.,
Colgan R., Colleoni M., Collette C.G., Collins C., Cominsky L.R.,
Constancio M., Conti L., Cooper S.J., Corban P., Corbitt T.R., Cordero-
Carrion I., Corley K.R., Cornish N., Corsi A., Cortese S., Costa C.A.,
Cotesta R., Coughlin M.W., Coughlin S.B., Coulon J.-P., Countryman S.T.,
Couvares P., Covas P.B., Cowan E.E., Coward D.M., Cowart M.J., Coyne D.C.,
Coyne R., Creighton J.D.E., Creighton T.D., Cripe J., Croquette M.,
Crowder S.G., Cullen T.J., Cumming A., Cunningham L., Cuoco E., Canton T.D.,
Dalya G., Danilishin S.L., D'Antonio S., Danzmann K., Dasgupta A., Da Silva
Costa C.F., Datrier L.E.H., Dattilo V., Dave I., Davier M., Davis D.,
Daw E.J., DeBra D., Deenadayalan M., Degallaix J., De Laurentis M.,
Deleglise S., Del Pozzo W., DeMarchi L.M., Demos N., Dent T., De Pietri R.,
Derby J., De Rosa R., De Rossi C., DeSalvo R., de Varona O., Dhurandhar S.,
Diaz M.C., Dietrich T., Di Fiore L., Di Giovanni M., Di Girolamo T., Di
Lieto A., Ding B., Di Pace S., Di Palma I., Di Renzo F., Dmitriev A.,
Doctor Z., Donovan F., Dooley K.L., Doravari S., Dorrington I., Downes T.P.,
Drago M., Driggers J.C., Du Z., Ducoin J.-G., Dupej P., Dwyer S.E.,
Easter P.J., Edo T.B., Edwards M.C., Effler A., Ehrens P., Eichholz J.,
Eikenberry S.S., Eisenmann M., Eisenstein R.A., Essick R.C., Estelles H.,
Estevez D., Etienne Z.B., Etzel T., Evans M., Evans T.M., Fafone V.,
Fair H., Fairhurst S., Fan X., Farinon S., Farr B., Farr W.M., Fauchon-
Jones E.J., Favata M., Fays M., Fazio M., Fee C., Feicht J., Fejer M.M.,
Feng F., Fernandez-Galiana A., Ferrante I., Ferreira E.C., Ferreira T.A.,
Ferrini F., Fidecaro F., Fiori I., Fiorucci D., Fishbach M., Fisher R.P.,
Fishner J.M., Fitz-Axen M., Flaminio R., Fletcher M., Flynn E., Fong H.,
Font J.A., Forsyth P.W.F., Fournier J.-D., Frasca S., Frasconi F., Frei Z.,
Freise A., Frey R., Frey V., Fritschel P., Frolov V.V., Fulda P., Fyffe M.,
Gabbard H.A., Gadre B.U., Gaebel S.M., Gair J.R., Gammaitoni L.,
Ganija M.R., Gaonkar S.G., Garcia A., Garcia-Quiros C., Garufi F.,
Gateley B., Gaudio S., Gaur G., Gayathri V., Gemme G., Genin E., Gennai A.,
George D., George J., Gergely L., Germain V., Ghonge S., Ghosh A., Ghosh A.,
Ghosh S., Giacomazzo B., Giaime J.A., Giardina K.D., Giazotto A., Gill K.,
Giordano G., Glover L., Godwin P., Goetz E., Goetz R., Goncharov B.,
Gonzalez G., Castro J.M.G., Gopakumar A., Gorodetsky M.L., Gossan S.E.,
Gosselin M., Gouaty R., Grado A., Graef C., Granata M., Grant A., Gras S.,
Grassia P., Gray C., Gray R., Greco G., Green A.C., Green R.,
Gretarsson E.M., Groot P., Grote H., Grunewald S., Gruning P., Guidi G.M.,
Gulati H.K., Guo Y., Gupta A., Gupta M.K., Gustafson E.K., Gustafson R.,
Haegel L., Halim O., Hall B.R., Hall E.D., Hamilton E.Z., Hammond G.,
Haney M., Hanke M.M., Hanks J., Hanna C., Hannam M.D., Hannuksela O.A.,
Hanson J., Hardwick T., Haris K., Harms J., Harry G.M., Harry I.W.,
Haster C.-J., Haughian K., Hayes F.J., Healy J., Heidmann A., Heintze M.C.,
Heitmann H., Hello P., Hemming G., Hendry M., Heng I.S., Hennig J.,
Heptonstall A.W., Vivanco F.H., Heurs M., Hild S., Hinderer T., Ho W.C.G.,
Hoak D., Hochheim S., Hofman D., Holgado A.M., Holland N.A., Holt K.,
Holz D.E., Hopkins P., Horst C., Hough J., Howell E.J., Hoy C.G., Hreibi A.,
Huerta E.A., Huet D., Hughey B., Hulko M., Husa S., Huttner S.H., Huynh-
Dinh T., Idzkowski B., Iess A., Ingram C., Inta R., Intini G., Irwin B.,
Isa H.N., Isac J.-M., Isi M., Iyer B.R., Izumi K., Jacqmin T., Jadhav S.J.,
Jani K., Janthalur N.N., Jaranowski P., Jenkins A.C., Jiang J.,
Johnson D.S., Jones A.W., Jones D.I., Jones R., Jonker R.J.G., Ju L.,
Junker J., Kalaghatgi C.V., Kalogera V., Kamai B., Kandhasamy S., Kang G.,
Kanner J.B., Kapadia S.J., Karki S., Karvinen K.S., Kashyap R.,
Kasprzack M., Katsanevas S., Katsavounidis E., Katzman W., Kaufer S.,
Kawabe K., Keerthana N.V., Kefelian F., Keitel D., Kennedy R., Key J.S.,
Khalili F.Y., Khan H., Khan I., Khan S., Khan Z., Khazanov E.A.,
Khursheed M., Kijbunchoo N., Kim C., Kim J.C., Kim K., Kim W., Kim W.S.,
Kim Y.-M., Kimball C., King E.J., King P.J., Kinley-Hanlon M., Kirchhoff R.,
Kissel J.S., Kleybolte L., Klika J.H., Klimenko S., Knowles T.D., Koch P.,
Koehlenbeck S.M., Koekoek G., Koley S., Kondrashov V., Kontos A., Koper N.,
Korobko M., Korth W.Z., Kowalska I., Kozak D.B., Kringel V., Krishnendu N.,
Krolak A., Kuehn G., Kumar A., Kumar P., Kumar R., Kumar S., Kuo L.,
Kutynia A., Kwang S., Lackey B.D., Lai K.H., Lam T.L., Landry M., Lane B.B.,
Lang R.N., Lange J., Lantz B., Lanza R.K., Lartaux-Vollard A., Lasky P.D.,
Laxen M., Lazzarini A., Lazzaro C., Leaci P., Leavey S., Lecoeuche Y.K.,
Lee C.H., Lee H.K., Lee H.M., Lee H.W., Lee J., Lee K., Lehmann J.,
Lenon A., Leroy N., Letendre N., Levin Y., Li J., Li K.J.L., Li T.G.F.,
Li X., Lin F., Linde F., Linker S.D., Littenberg T.B., Liu J., Liu X.,
Lo R.K.L., Lockerbie N.A., London L.T., Longo A., Lorenzini M., Loriette V.,
Lormand M., Losurdo G., Lough J.D., Lousto C.O., Lovelace G., Lower M.E.,
Luck H., Lumaca D., Lundgren A.P., Lynch R., Ma Y., Macas R., Macfoy S.,
MacInnis M., Macleod D.M., Macquet A., Magana-Sandoval F., Magana
Zertuche L., Magee R.M., Majorana E., Maksimovic I., Malik A., Man N.,
Mandic V., Mangano V., Mansell G.L., Manske M., Mantovani M., Marchesoni F.,
Marion F., Marka S., Marka Z., Markakis C., Markosyan A.S., Markowitz A.,
Maros E., Marquina A., Marsat S., Martelli F., Martin I.W., Martin R.M.,
Martynov D.V., Mason K., Massera E., Masserot A., Massinger T.J., Masso-
Reid M., Mastrogiovanni S., Matas A., Matichard F., Matone L., Mavalvala N.,
Mazumder N., McCann J.J., McCarthy R., McClelland D.E., McCormick S.,
McCuller L., McGuire S.C., McIver J., McManus D.J., McRae T.,
McWilliams S.T., Meacher D., Meadors G.D., Mehmet M., Mehta A.K., Meidam J.,
Melatos A., Mendell G., Mercer R.A., Mereni L., Merilh E.L., Merzougui M.,
Meshkov S., Messenger C., Messick C., Metzdorff R., Meyers P.M., Miao H.,
Michel C., Middleton H., Mikhailov E.E., Milano L., Miller A.L., Miller A.,
Millhouse M., Mills J.C., Milovich-Goff M.C., Minazzoli O., Minenkov Y.,
Mishkin A., Mishra C., Mistry T., Mitra S., Mitrofanov V.P.,
Mitselmakher G., Mittleman R., Mo G., Moffa D., Mogushi K.,
Mohapatra S.R.P., Montani M., Moore C.J., Moraru D., Moreno G., Morisaki S.,
Mours B., Mow-Lowry C.M., Mukherjee A., Mukherjee D., Mukherjee S.,
Mukund N., Mullavey A., Munch J., Muniz E.A., Muratore M., Murray P.G.,
Nagar A., Nardecchia I., Naticchioni L., Nayak R.K., Neilson J.,
Nelemans G., Nelson T.J.N., Nery M., Neunzert A., Ng K.Y., Ng S., Nguyen P.,
Nichols D., Nissanke S., Nocera F., North C., Nuttall L.K.,
Obergaulinger M., Oberling J., O'Brien B.D., O'Dea G.D., Ogin G.H., Oh J.J.,
Oh S.H., Ohme F., Ohta H., Okada M.A., Oliver M., Oppermann P., Oram R.J.,
O'Reilly B., Ormiston R.G., Ortega L.F., O'Shaughnessy R., Ossokine S.,
Ottaway D.J., Overmier H., Owen B.J., Pace A.E., Pagano G., Page M.A.,
Pai A., Pai S.A., Palamos J.R., Palashov O., Palomba C., Pal-Singh A.,
Pan H.-W., Pang B., Pang P.T.H., Pankow C., Pannarale F., Pant B.C.,
Paoletti F., Paoli A., Parida A., Parker W., Pascucci D., Pasqualetti A.,
Passaquieti R., Passuello D., Patil M., Patricelli B., Pearlstone B.L.,
Pedersen C., Pedraza M., Pedurand R., Pele A., Penn S., Perez C.J.,
Perreca A., Pfeiffer H.P., Phelps M., Phukon K.S., Piccinni O.J., Pichot M.,
Piergiovanni F., Pillant G., Pinard L., Pirello M., Pitkin M., Poggiani R.,
Pong D.Y.T., Ponrathnam S., Popolizio P., Porter E.K., Powell J.,
Prajapati A.K., Prasad J., Prasai K., Prasanna R., Pratten G.,
Prestegard T., Privitera S., Prodi G.A., Prokhorov L.G., Puncken O.,
Punturo M., Puppo P., Purrer M., Qi H., Quetschke V., Quinonez P.J.,
Quintero E.A., Quitzow-James R., Raab F.J., Radkins H., Radulescu N.,
Raffai P., Raja S., Rajan C., Rajbhandari B., Rakhmanov M., Ramirez K.E.,
Ramos-Buades A., Rana J., Rao K., Rapagnani P., Raymond V., Razzano M.,
Read J., Regimbau T., Rei L., Reid S., Reitze D.H., Ren W., Ricci F.,
Richardson C.J., Richardson J.W., Ricker P.M., Riles K., Rizzo M.,
Robertson N.A., Robie R., Robinet F., Rocchi A., Rolland L., Rollins J.G.,
Roma V.J., Romanelli M., Romano R., Romel C.L., Romie J.H., Rose K.,
Rosinska D., Rosofsky S.G., Ross M.P., Rowan S., Rudiger A., Ruggi P.,
Rutins G., Ryan K., Sachdev S., Sadecki T., Sakellariadou M., Salconi L.,
Saleem M., Samajdar A., Sammut L., Sanchez E.J., Sanchez L.E., Sanchis-
Gual N., Sandberg V., Sanders J.R., Santiago K.A., Sarin N., Sassolas B.,
Saulson P.R., Sauter O., Savage R.L., Schale P., Scheel M., Scheuer J.,
Schmidt P., Schnabel R., Schofield R.M.S., Schonbeck A., Schreiber E.,
Schulte B.W., Schutz B.F., Schwalbe S.G., Scott J., Scott S.M., Seidel E.,
Sellers D., Sengupta A.S., Sennett N., Sentenac D., Sequino V., Sergeev A.,
Setyawati Y., Shaddock D.A., Shaffer T., Shahriar M.S., Shaner M.B.,
Shao L., Sharma P., Shawhan P., Shen H., Shink R., Shoemaker D.H.,
Shoemaker D.M., ShyamSundar S., Siellez K., Sieniawska M., Sigg D.,
Silva A.D., Singer L.P., Singh N., Singhal A., Sintes A.M.,
Sitmukhambetov S., Skliris V., Slagmolen B.J.J., Slaven-Blair T.J.,
Smith J.R., Smith R.J.E., Somala S., Son E.J., Sorazu B., Sorrentino F.,
Souradeep T., Sowell E., Spencer A.P., Srivastava A.K., Srivastava V.,
Staats K., Stachie C., Standke M., Steer D.A., Steinke M., Steinlechner J.,
Steinlechner S., Steinmeyer D., Stevenson S.P., Stocks D., Stone R.,
Stops D.J., Strain K.A., Stratta G., Strigin S.E., Strunk A., Sturani R.,
Stuver A.L., Sudhir V., Summerscales T.Z., Sun L., Sunil S., Suresh J.,
Sutton P.J., Swinkels B.L., Szczepanczyk M.J., Tacca M., Tait S.C.,
Talbot C., Talukder D., Tanner D.B., Tapai M., Taracchini A., Tasson J.D.,
Taylor R., Thies F., Thomas M., Thomas P., Thondapu S.R., Thorne K.A.,
Thrane E., Tiwari S., Tiwari S., Tiwari V., Toland K., Tonelli M.,
Tornasi Z., Torres-Forne A., Torrie C.I., Toyra D., Travasso F., Traylor G.,
Tringali M.C., Trovato A., Trozzo L., Trudeau R., Tsang K.W., Tse M.,
Tso R., Tsukada L., Tsuna D., Tuyenbayev D., Ueno K., Ugolini D.,
Unnikrishnan C.S., Urban A.L., Usman S.A., Vahlbruch H., Vajente G.,
Valdes G., van Bakel N., van Beuzekom M., van den Brand J.F.J., Van Den
Broeck C., Vander-Hyde D.C., van Heijningen J.V., van der Schaaf L., van
Veggel A.A., Vardaro M., Varma V., Vass S., Vasuth M., Vecchio A.,
Vedovato G., Veitch J., Veitch P.J., Venkateswara K., Venugopalan G.,
Verkindt D., Vetrano F., Vicere A., Viets A.D., Vine D.J., Vinet J.-Y.,
Vitale S., Vo T., Vocca H., Vorvick C., Vyatchanin S.P., Wade A.R.,
Wade L.E., Wade M., Walet R., Walker M., Wallace L., Walsh S., Wang G.,
Wang H., Wang J.Z., Wang W.H., Wang Y.F., Ward R.L., Warden Z.A., Warner J.,
Was M., Watchi J., Weaver B., Wei L.-W., Weinert M., Weinstein A.J.,
Weiss R., Wellmann F., Wen L., Wessel E.K., Wessels P., Westhouse J.W.,
Wette K., Whelan J.T., Whiting B.F., Whittle C., Wilken D.M., Williams D.,
Williamson A.R., Willis J.L., Willke B., Wimmer M.H., Winkler W., Wipf C.C.,
Wittel H., Woan G., Woehler J., Wofford J.K., Worden J., Wright J.L.,
Wu D.S., Wysocki D.M., Xiao L., Yamamoto H., Yancey C.C., Yang L., Yap M.J.,
Yazback M., Yeeles D.W., Yu H., Yu H., Yuen S.H.R., Yvert M., Zadrozny A.K.,
Zanolin M., Zelenova T., Zendri J.-P., Zevin M., Zhang J., Zhang L.,
Zhang T., Zhao C., Zhou M., Zhou Z., Zhu X.J., Zucker M.E., Zweizig J.,
Arzoumanian Z., Bogdanov S., Cognard I., Corongiu A., Enoto T., Freire P.,
Gendreau K.C., Guillemot L., Harding A.K., Jankowski F., Keith M.J.,
Kerr M., Lyne A., Palfreyman J., Possenti A., Ridolfi A., Stappers B.,
Theureau G., Weltervrede P.
<Astrophys. J., 879, 10 (2019)>
=2019ApJ...879...10A 2019ApJ...879...10A
ADC_Keywords: Pulsars; Gravitational wave; Stars, distances
Keywords: gravitational waves ; pulsars: general ; stars: neutron
Abstract:
We present a search for gravitational waves from 221 pulsars with
rotation frequencies ≳10Hz. We use advanced LIGO data from its first
and second observing runs spanning 2015-2017, which provides the
highest-sensitivity gravitational-wave data so far obtained. In this
search we target emission from both the l=m=2 mass quadrupole mode,
with a frequency at twice that of the pulsar's rotation, and the l=2,
m=1 mode, with a frequency at the pulsar rotation frequency. The
search finds no evidence for gravitational-wave emission from any
pulsar at either frequency. For the l=m=2 mode search, we provide
updated upper limits on the gravitational-wave amplitude, mass
quadrupole moment, and fiducial ellipticity for 167 pulsars, and the
first such limits for a further 55. For 20 young pulsars these results
give limits that are below those inferred from the pulsars' spin-down.
For the Crab and Vela pulsars our results constrain gravitational-wave
emission to account for less than 0.017% and 0.18% of the spin-down
luminosity, respectively. For the recycled millisecond pulsar
J0711-6830 our limits are only a factor of 1.3 above the spin-down
limit, assuming the canonical value of 1038kg.m2 for the star's
moment of inertia, and imply a gravitational-wave-derived upper limit
on the star's ellipticity of 1.2x10-8. We also place new limits on
the emission amplitude at the rotation frequency of the pulsars.
Description:
The data analyzed in this paper consist of those obtained by the two
LIGO detectors (the LIGO Hanford Observatory, commonly abbreviated to
LHO or H1, and the LIGO Livingston Observatory, abbreviated to LLO or
L1) taken during their first and second observing runs (O1 and O2,
respectively) in their advanced detector configurations.
Data from O1 between 2015 September 11 (with start times of 01:25:03
UTC and 18:29:03 UTC for LHO and LLO, respectively) and 2016 January
19 at 17:07:59 UTC have been used for a total of 79 and 66 days of
observing time for LHO and LLO, respectively.
Data from O2 between 2016 November 30 at 16:00:00 UTC and 2017 August
25 at 22:00:00 UTC, for both LHO and LLO, have been used.
For this analysis we have gathered ephemerides for 221 pulsars based
on radio, X-ray, and γ-ray observations. The observations have
used the 42ft telescope and Lovell telescope at Jodrell Bank (UK), the
Mount Pleasant Observatory 26m telescope (Australia), the Parkes radio
telescope (Australia), the Nancay Decimetric Radio Telescope (France),
the Molonglo Observatory Synthesis Telescope (Australia), the Arecibo
Observatory (Puerto Rico), the Fermi Large Area Telescope, and the
Neutron Star Interior Composition Explorer (NICER). See Section 2.2.
During the course of the O2 period, five pulsars exhibited timing
glitches. The Vela pulsar (J0835-4510) glitched on 2016 December 12 at
11:36 UTC, and the Crab pulsar (J0534+2200) showed a small glitch on
2017 March 27 at around 22:04 UTC. PSR J1028-5819 glitched some time
around 2017 May 29, with a best-fit glitch time of 01:36 UTC.
PSRJ1718-3825 experienced a small glitch around 2017 July 2.
PSRJ0205+6449 experienced four glitches over the period between the
start of O1 and the end of O2, with glitch epochs of 2015 November 19,
2016 July 1, 2016 October 19, and 2017 May 27.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 409 221 Upper limits of gravitational wave amplitude and
other derived quantities from erratum published
in 2020, ApJ, 899, 170
--------------------------------------------------------------------------------
See also:
B/psr : ATNF Pulsar Catalogue (Manchester+, 2005)
J/MNRAS/353/1311 : Long-term timing observations of 374 pulsars (Hobbs+, 2004)
J/ApJ/602/264 : Proper motions & radial velocities in M15 (McNamara+, 2004)
J/AJ/133/1287 : JHK photom. of 24 Gal. globular clusters (Valenti+, 2007)
J/ApJ/713/671 : Gravitational waves from pulsars (Abbott+, 2010)
J/MNRAS/402/1729 : JHK photometry of 36 Gal. globular clusters (Valenti+ 2010)
J/MNRAS/414/1679 : 315 glitches in the rotation of pulsars (Espinoza+, 2011)
J/ApJ/763/80 : GBT 350MHz survey. I. 13 new pulsars (Boyles+, 2013)
J/ApJ/785/119 : Gravitational waves from known pulsars (Aasi+, 2014)
J/MNRAS/458/3341 : 42 ms pulsars high-precision timing (Desvignes+, 2016)
J/ApJ/839/12 : Gravitational waves search from known PSR (Abbott+, 2017)
J/ApJS/247/33 : Fermi LAT fourth source catalog (4FGL) (Abdollahi+, 2020)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- PSR Pulsar J2000 coordinate name
13- 17 F5.1 Hz Freq [9/707.3] Pulsar rotation frequency
19- 26 E8.2 s/s Prot/dt [4.4e-22/4.3e-13]? Intrinsic rotational
period derivative (1)
28- 29 A2 --- r_Prot/dt Reference note for the period
derivative value (2)
31- 35 F5.2 kpc Dist [0.1/13.81]? Distance to the pulsar
37- 38 A2 --- r_Dist Reference note for the pulsar distance (2)
40- 47 E8.2 --- H0sd [1.2e-28/3.4e-24]? Spin-down limit of
gravitational wave amplitude
49- 56 E8.2 --- C21ULB [1.2e-26/8.5e-23]? Observed 95%
credible upper limit on amplitude from
the l=2, m=1 mode using the Bayesian
analysis (3)
58- 65 E8.2 --- C21ULrB [5.8e-26/1.5e-23]? Observed 95%
credible upper limit on amplitude from
the l=2, m=1 mode using restricted
orientation priors using the Bayesian
analysis (3)
67- 74 E8.2 --- C21ULF [2.5e-26/2.1e-23]? Observed 95%
confidence upper limit on amplitude
from the l=2, m=1 mode using the
F-statistic analysis (3)
76- 83 E8.2 --- C21ULrG [1e-25/1.1e-23]? Observed 95%
confidence upper limit on amplitude
from the l=2, m=1 mode using restricted
orientation priors using the
G-statistic analysis (3)
85- 92 E8.2 --- C21UL5nV [1.2e-26/10e-25]? Observed 95%
confidence upper limit on amplitude
from the l=2, m=1 mode using the
5n-vector analysis
94-101 E8.2 --- C21ULr5nV [1.3e-25/2.1e-25]? Observed 95%
confidence upper limit on amplitude
from the l=2, m=1 mode using restricted
orientation priors using the 5n-vector
analysis
103-110 E8.2 --- C22ULB [4e-27/1.7e-25]? Observed 95% credible
upper limit on amplitude from the l=m=2
mode using the Bayesian analysis (3)
112-119 E8.2 --- C22ULrB [7.2e-27/1.1e-25]? Observed 95%
credible upper limit on amplitude from
the l=m=2 mode using restricted
orientation priors using the Bayesian
analysis (3)
121-128 E8.2 --- C22ULF [5.6e-27/1.1e-25]? Observed 95%
confidence upper limit on amplitude
from the l=m=2 mode using the
F-statistic analysis (3)
130-137 E8.2 --- C22ULrG [1.1e-26/8.8e-26]? Observed 95%
confidence upper limit on amplitude
from the l=m=2 mode using restricted
orientation priors using the
G-statistic analysis (3)
139-146 E8.2 --- H0ULB [8.8e-27/7.3e-25] Observed 95% credible
upper limit on amplitude from the l=m=2
mode using the Bayesian analysis (4)
148-155 E8.2 --- H0ULrB [1.4e-26/2.7e-25]? Observed 95%
credible upper limit on amplitude from
the l=m=2 mode using restricted
orientation priors using the Bayesian
analysis (4)
157-164 E8.2 --- H0ULF [1.1e-26/2.8e-25]? Observed 95%
confidence upper limit on amplitude
from the l=m=2 mode using the
F-statistic analysis (4)
166-173 E8.2 --- H0ULrG [1.3e-26/2e-25]? Observed 95%
confidence upper limit on amplitude
from the l=m=2 mode using restricted
orientation priors using the
G-statistic analysis (4)
175-182 E8.2 --- H0UL5nV [1.2e-26/4.7e-25]? Observed 95%
confidence upper limit on amplitude
from the l=m=2 mode using the 5n-vector
analysis (4)
184-191 E8.2 --- H0ULr5nV [1.9e-26/2.4e-25]? Observed 95%
confidence upper limit on amplitude
from the l=m=2 mode using restricted
orientation priors using the 5n-vector
analysis (4)
193-200 E8.2 kg.m2 Q22ULB [1E+30/1.62e+36]? Derived 95% credible
upper limit on the l=m=2 mass
quadrupole moment using the Bayesian
analysis (4)
202-209 E8.2 kg.m2 Q22ULrB [6.3E+32/1.13e+34]? Derived 95% credible
upper limit on the l=m=2 mass
quadrupole moment using restricted
orientation priors using the Bayesian
analysis (4)
211-218 E8.2 kg.m2 Q22ULF [9.1e+32/7.02e+34]? Derived 95%
confidence upper limit on the l=m=2
mass quadrupole moment using the
F-statistic analysis (4)
220-227 E8.2 kg.m2 Q22ULrG [5.4e+32/8.4e+33]? Derived 95%
confidence upper limit on the l=m=2
mass quadrupole moment using restricted
orientation priors using the
G-statistic analysis (4)
229-236 E8.2 kg.m2 Q22UL5nV [9E+29/1.45e+35]? Derived 95%
confidence upper limit on the l=m=2
mass quadrupole moment using the
5n-vector analysis (4)
238-245 E8.2 kg.m2 Q22ULr5nV [1.2E+33/9.92e+33]? Derived 95%
confidence upper limit on the l=m=2
mass quadrupole moment using restricted
orientation priors using the 5n-vector
analysis (4)
247-254 E8.2 --- ellULB [5.7e-9/0.021]? Derived 95% credible
upper limit on the fiducial ellipticity
using the Bayesian analysis (4)
256-263 E8.2 --- ellULrB [7.8e-6/0.00015]? Derived 95% credible
upper limit on the fiducial ellipticity
using restricted orientation priors
using the Bayesian analysis (4)
265-272 E8.2 --- ellULF [6e-8/0.001]? Derived 95% confidence
upper limit on the fiducial ellipticity
using the F-statistic analysis (4)
274-281 E8.2 --- ellULrG [6.9e-6/0.00011]? Derived 95%
confidence upper limit on the fiducial
ellipticity using restricted
orientation priors using the
G-statistic analysis (4)
283-290 E8.2 --- ellUL5nV [1.1e-8/0.002]? Derived 95% confidence
upper limit on the fiducial ellipticity
using the 5n-vector analysis (4)
292-299 E8.2 --- ellULr5nV [1.5e-5/0.00013]? Derived 95%
confidence upper limit on the fiducial
ellipticity using restricted
orientation priors using the 5n-vector
analysis (4)
301-308 F8.3 --- H0ULB/H0sd [0.013/3188]? Ratio H0UL_BAYES/H0SD (4)
310-317 F8.3 --- H0ULrB/H0sd [0.01/0.2]? Ratio H0ULResBayes/H0SD (4)
319-326 F8.3 --- H0ULF/H0sd [0.015/7.3]? Ratio H0ULFStat/H0SD (4)
328-335 F8.3 --- H0ULrG/H0sd [0.009/0.06]? Ratio H0ULResGStat/H0SD (4)
337-344 F8.3 --- H0UL5nV/H0sd [0.02/4.6]? Ratio H0UL5nVec/H0SD (4)
346-353 F8.3 --- H0ULr5nV/H0sd [0.02/0.3]? Ratio H0ULRes5nVec/H0SD (4)
355-358 F4.1 [-] logOl2m12B [-6.2/-1.8] Base-10 logarithm of odds
for coherent signal versus incoherent
signal for the Bayesian analysis (3)
360-363 F4.1 [-] logOl2m12rB [-5.3/-3.1]? Base-10 logarithm of odds
for coherent signal versus incoherent
signal using restricted orientation
priors for the Bayesian analysis (3)
365-368 F4.1 [-] logOl2m2B [-3.4/-0.5] Base-10 logarithm of odds
for coherent signal versus incoherent
signal for the Bayesian analysis (4)
370-373 F4.1 [-] logOl2m2rB [-2.9/-2.1]? Base-10 logarithm of odds
for coherent signal versus incoherent
signal using restricted orientation
priors for the Bayesian analysis (4)
375-379 F5.2 --- P5nVl2m2 [0.13/0.99]? P-value for the null
hypothesis in the 5n-vector analysis
for the l=m=2 mode
381-385 F5.2 --- P5nVl2m1 [0.06/0.8]? P-value for the null
hypothesis in the 5n-vector analysis
for the l=2, m=1 mode
387-391 F5.2 --- FAPl2m2F [0.26/0.8]? False alarm probability in
the F-statistic analysis for the l=2,
m=2 mode
393-397 F5.2 --- FAPl2m2G [0.75/0.87]? False alarm probability in
the G-statistic analysis for the l=2,
m=2 mode
399-403 F5.2 --- FAPl2m1F [0.04/0.8]? False alarm probability in
the F-statistic analysis for the l=2,
m=1 mode
405-409 F5.2 --- FAPl2m1G [0.18/0.75]? False alarm probability in
the G-statistic analysis for the l=2,
m=1 mode
-------------------------------------------------------------------------------
Note (1): In cases where the intrinsic period derivative exists in the
literature, with an associated error, those values are shown.
Otherwise, if a transverse velocity can be calculated from proper
motion values within the ATN Pulsar Catalogue and a distance is
known, then they are used to correct for the Shklovskii and Galactic
rotation effects on the observed period derivative to derive the
intrinsic value shown. In cases where this intrinsic period derivate
is negative no value is give and no spin-down limit is calculated.
For some pulsars within globular clusters the period derivative is a
proxy value calculated by assuming that the star has a
characteristic age of 10+9 years and a braking index of n=5. For
other pulsars the observed period derivative is given.
Note (2): Bibcode references for the period derivatives and pulsar distances.
Reference code as follows:
a = 2018ApJS..235...37A 2018ApJS..235...37A
b = 2017ApJ...835...29Y 2017ApJ...835...29Y
c = 2013A&A...560A..18K 2013A&A...560A..18K
d = 2014MNRAS.444.1859V 2014MNRAS.444.1859V
e = 2013Sci...340..448A 2013Sci...340..448A
f = 2016MNRAS.455.1751R 2016MNRAS.455.1751R
g = 2016MNRAS.458.3341D 2016MNRAS.458.3341D
h = 2016MNRAS.455.3806B 2016MNRAS.455.3806B
i = 2009Sci...323.1327D 2009Sci...323.1327D
j = 2003ApJ...596.1137D 2003ApJ...596.1137D
k = 2018arXiv181206262M 2018arXiv181206262M
l = 2017ApJ...839...12A 2017ApJ...839...12A
m = 2012ApJ...755...39V 2012ApJ...755...39V
n = 2013ApJ...763...80B 2013ApJ...763...80B
o = 2013ApJ...778..120H 2013ApJ...778..120H
p = 2014ApJ...787...82F 2014ApJ...787...82F
q = 2015ApJ...799..165B 2015ApJ...799..165B
r = 2018ApJ...855..122V 2018ApJ...855..122V
s = 2018arXiv181206262M 2018arXiv181206262M
t = 2012MNRAS.423.3328F 2012MNRAS.423.3328F
u = 2013MNRAS.430..571E 2013MNRAS.430..571E
v = 2007A&A...470.1043O 2007A&A...470.1043O
w = 2014MNRAS.443.2183F 2014MNRAS.443.2183F
x = 1996yCat.7195....0H 1996yCat.7195....0H
y = 2010MNRAS.402.1729V 2010MNRAS.402.1729V
z = 2014ApJ...795..168M 2014ApJ...795..168M
aa = 2007AJ....133.1287V 2007AJ....133.1287V
bb = 1991AJ....102..152R 1991AJ....102..152R
cc = 2011RAA....11..824W 2011RAA....11..824W
dd = 2011ApJ...729L..16G 2011ApJ...729L..16G
ee = 2003A&A...408..529G 2003A&A...408..529G
ff = 2004ApJ...602..264M 2004ApJ...602..264M
gg = 2013ApJ...770..145D 2013ApJ...770..145D
hh = 2001ApJ...547..323H 2001ApJ...547..323H
ii = 2018MNRAS.475..469S 2018MNRAS.475..469S
jj = 2011ApJ...743L..26R 2011ApJ...743L..26R
kk = 2014MNRAS.439.1865N 2014MNRAS.439.1865N
Note (3): These results have been produced using a coherent analysis including
both the l=2, m=1 mode and the l=m=2 mode.
Note (4): These results have been produced using an analysis only including
the l=m=2 mode.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 07-Dec-2020