J/ApJ/881/153 Space telescope RM project. VIII. NGC5548 HST sp. (Kriss+, 2019)
Space Telescope and Optical Reverberation Mapping project.
VIII. Time variability of emission and absorption in NGC 5548 based on modeling
the ultraviolet spectrum.
Kriss G.A., De Rosa G., Ely J., Peterson B.M., Kaastra J., Mehdipour M.,
Ferland G.J., Dehghanian M., Mathur S., Edelson R., Korista K.T., Arav N.,
Barth A.J., Bentz M.C., Brandt W.N., Crenshaw D.M., Dalla Bonta E.,
Denney K.D., Done C., Eracleous M., Fausnaugh M.M., Gardner E., Goad M.R.,
Grier C.J., Horne K., Kochanek C.S., McHardy I.M., Netzer H., Pancoast A.,
Pei L., Pogge R.W., Proga D., Silva C., Tejos N., Vestergaard M.,
Adams S.M., Anderson M.D., Arevalo P., Beatty T.G., Behar E., Bennert V.N.,
Bianchi S., Bigley A., Bisogni S., Boissay-Malaquin R., Borman G.A.,
Bottorff M.C., Breeveld A.A., Brotherton M., Brown J.E., Brown J.S.,
Cackett E.M., Canalizo G., Cappi M., Carini M.T., Clubb K.I.,
Comerford J.M., Coker C.T., Corsini E.M., Costantini E., Croft S.,
Croxall K.V., Deason A.J., De Lorenzo-Caceres A., De Marco B., Dietrich M.,
Di Gesu L., Ebrero J., Evans P.A., Filippenko A.V., Flatland K., Gates E.L.,
Gehrels N., Geier S., Gelbord J.M., Gonzalez L., Gorjian V., Grupe D.,
Gupta A., Hall P.B., Henderson C.B., Hicks S., Holmbeck E., Holoien T.W.-S.,
Hutchison T.A., Im M., Jensen J.J., Johnson C.A., Joner M.D., Kaspi S.,
Kelly B.C., Kelly P.L., Kennea J.A., Kim M., Kim S.C., Kim S.Y., King A.,
Klimanov S.A., Krongold Y., Lau M.W., Lee J.C., Leonard D.C., Li M.,
Lira P., Lochhaas C., Ma Z., MacInnis F., Malkan M.A., Manne-Nicholas E.R.,
Matt G., Mauerhan J.C., McGurk R., Montuori C., Morelli L., Mosquera A.,
Mudd D., Muller-Sanchez F., Nazarov S.V., Norris R.P., Nousek J.A.,
Nguyen M.L., Ochner P., Okhmat D.N., Paltani S., Parks J.R., Pinto C.,
Pizzella A., Poleski R., Ponti G., Pott J.-U., Rafter S.E., Rix H.-W.,
Runnoe J., Saylor D.A., Schimoia J.S., Schnulle K., Scott B., Sergeev S.G.,
Shappee B.J., Shivvers I., Siegel M., Simonian G.V., Siviero A.,
Skielboe A., Somers G., Spencer M., Starkey D., Stevens D.J., Sung H.-I.,
Tayar J., Teems K.G., Treu T., Turner C.S., Uttley P., Van Saders J..,
Vican L., Villforth C., Villanueva S. Jr, Walton D.J., Waters T., Weiss Y.,
Woo J.-H., Yan H., Yuk H., Zheng W., Zhu W., Zu Y.
<Astrophys. J., 881, 153 (2019)>
=2019ApJ...881..153K 2019ApJ...881..153K
ADC_Keywords: Galaxies, Seyfert; Spectra, ultraviolet; Equivalent widths
Keywords: galaxies: active; galaxies: individual (NGC 5548); galaxies: nuclei;
galaxies: Seyfert
Abstract:
We model the ultraviolet spectra of the Seyfert 1 galaxy NGC 5548
obtained with the Hubble Space Telescope during the 6 month
reverberation mapping campaign in 2014. Our model of the emission from
NGC 5548 corrects for overlying absorption and deblends the individual
emission lines. Using the modeled spectra, we measure the response to
continuum variations for the deblended and absorption-corrected
individual broad emission lines, the velocity-dependent profiles of
Lyα and CIV, and the narrow and broad intrinsic absorption
features. We find that the time lags for the corrected emission lines
are comparable to those for the original data. The velocity-binned lag
profiles of Lyα and CIV have a double-peaked structure
indicative of a truncated Keplerian disk. The narrow absorption lines
show a delayed response to continuum variations corresponding to
recombination in gas with a density of ∼105cm-3. The
high-ionization narrow absorption lines decorrelate from continuum
variations during the same period as the broad emission lines.
Analyzing the response of these absorption lines during this period
shows that the ionizing flux is diminished in strength relative to the
far-ultraviolet continuum. The broad absorption lines associated with
the X-ray obscurer decrease in strength during this same time
interval. The appearance of X-ray obscuration in ∼2012 corresponds
with an increase in the luminosity of NGC 5548 following an extended
low state. We suggest that the obscurer is a disk wind triggered by
the brightening of NGC 5548 following the decrease in size of the
broad-line region during the preceding low-luminosity state.
Description:
Our observational program is described in detail by De Rosa+ (Paper I;
2015, J/ApJ/806/128). Summarizing briefly, we observed NGC 5548 using
the Cosmic Origins Spectrograph (COS) on HST using daily single-orbit
visits from 2014 February 1 through July 27 (Space Telescope and
Optical Reverberation Mapping (STORM) campaign).
Objects:
----------------------------------------------------------
RA (ICRS) DE Designation(s)
----------------------------------------------------------
14 17 59.54 +25 08 12.6 NGC 5548 = MCG+04-34-013
----------------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 190 171 Modeled continuum and deblended emission-line
light curves for NGC 5548
table5.dat 621 171 Light curves for absorption lines in NGC 5548
--------------------------------------------------------------------------------
See also:
J/ApJ/613/682 : AGN central masses & broad-line region sizes (Peterson+, 2004)
J/ApJ/716/993 : LAMP: reverberation mapping of H and He lines (Bentz+, 2010)
J/ApJ/779/109 : Long-term monitoring of NGC 5548 (Peterson+, 2013)
J/ApJ/806/128 : Space telescope RM project. I. NGC5548 (De Rosa+, 2015)
J/ApJ/806/129 : Space telescope RM project. II. Swift data (Edelson+, 2015)
J/ApJ/821/56 : Space telescope RM project. III. NGC5548 LCs (Fausnaugh+, 2016)
J/ApJ/827/118 : A new reverberation mapping campaign on NGC 5548 (Lu+, 2016)
J/ApJ/837/131 : Space telescope RM project. V. NGC5548 sp. (Pei+, 2017)
J/ApJ/866/133 : Continuum-Hβ light curves of 5 Seyfert 1 (De Rosa+, 2018)
http://archive.stsci.edu/hlsp/storm : STORM home page on MAST
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 F10.4 d HJD [56690.6/56866] Heliocentric Julian Date,
midpoint of observations; HJD-2440000
11- 20 E10.3 cW/m2/nm F1158 [1.8e-14/7.3e-14] Observed flux at 1158Å
(1)
21- 30 E10.3 cW/m2/nm e_F1158 [2e-16/8.1e-16] The 1-sigma error in F1158
(2)
31- 40 E10.3 cW/m2/nm F1367 [1.7e-14/6.3e-14] Observed flux at 1367Å
(1)
41- 50 E10.3 cW/m2/nm e_F1367 [1.9e-16/7e-16] The 1-sigma error in F1367
(2)
51- 60 E10.3 cW/m2/nm F1469 [1.7e-14/6e-14] Observed flux at 1469Å
(1)
61- 70 E10.3 cW/m2/nm e_F1469 [2.5e-16/8.4e-16] The 1-sigma error in
F1469 (2)
71- 80 E10.3 cW/m2/nm F1745 [1.6e-14/5e-14] Observed flux at 1745Å
(1)
81- 90 E10.3 cW/m2/nm e_F1745 [2.3e-16/7.1e-16] The 1-sigma error in
F1745 (2)
91- 100 E10.3 mW/m2 FLya [5.3e-12/8.1e-12] Observed flux of broad Ly
alpha emission
101- 110 E10.3 mW/m2 e_FLya [5.9e-14/9.1e-14] The 1-sigma error in
FLya (2)
111- 120 E10.3 mW/m2 FNV [6.3e-13/1.5e-12] Observed flux of broad NV
emission
121- 130 E10.3 mW/m2 e_FNV [7.4e-15/1.7e-14] The 1-sigma error in FNV
(2)
131- 140 E10.3 mW/m2 FSiIV [5.7e-13/1.3e-12] Observed flux of broad
SiIV emission
141- 150 E10.3 mW/m2 e_FSiIV [6.3e-15/1.4e-14] The 1-sigma error in
FSiIV (2)
151- 160 E10.3 mW/m2 FCIV [5.3e-12/7.2e-12] Observed flux of broad
CIV emission
161- 170 E10.3 mW/m2 e_FCIV [7.5e-14/1.1e-13] The 1-sigma error in
FCIV (2)
171- 180 E10.3 mW/m2 FHeII [3.1e-13/1.1e-12] Observed flux of broad
HeII emission
181- 190 E10.3 mW/m2 e_FHeII [4.5e-15/1.5e-14] The 1-sigma error in
FHeII (2)
--------------------------------------------------------------------------------
Note (1): In units of erg/cm2/s/A.
Note (2): Flux uncertainties include both statistical and systematic errors.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 F10.4 d HJD [56690.6/56866] Heliocentric Julian Date,
midpoint of the observation; HJD-24400000
11- 17 F7.3 0.1nm EW1 [1.8/4] EW of broad Ly alpha absorption (1)
18- 23 F6.3 0.1nm e_EW1 [0.04/0.12] The 1-sigma error in EW1 (1)
24- 30 F7.3 0.1nm EW2 [0.5/3.6] EW of broad NV absorption (1)
31- 36 F6.3 0.1nm e_EW2 [0.1/0.4] The 1-sigma error in EW2 (1)
37- 43 F7.3 0.1nm EW3 [0/2.6] EW of broad SiIV absorption (1)
44- 49 F6.3 0.1nm e_EW3 [0/0.3] The 1-sigma error in EW3 (1)
50- 56 F7.3 0.1nm EW4 [0/1.7] EW of broad CIV absorption (1)
57- 62 F6.3 0.1nm e_EW4 [0/0.07] The 1-sigma error in EW4 (1)
63- 69 F7.3 0.1nm EW5 [-0.2/0.05] EW of Al II 1670 Abs Comp#1 (1)
70- 75 F6.3 0.1nm e_EW5 [0.02/0.04] The 1-sigma error in EW5 (1)
76- 82 F7.3 0.1nm EW6 [-0.3/-0.06] EW of C III* 1175 Abs Comp#1 (1)
83- 88 F6.3 0.1nm e_EW6 [0.01/0.03] The 1-sigma error in EW6 (1)
89- 95 F7.3 0.1nm EW7 [-0.3/-0.02] EW of C III* 1176 Abs Comp#1 (1)
96-101 F6.3 0.1nm e_EW7 [0.01/0.04] The 1-sigma error in EW7 (1)
102-108 F7.3 0.1nm EW8 [-0.3/0.04] EW of C II 1334 Abs Comp#1 (1)
109-114 F6.3 0.1nm e_EW8 [0.02/0.05] The 1-sigma error in EW8 (1)
115-121 F7.3 0.1nm EW9 [-0.3/0.02] EW of C II* 1335 Abs Comp#1 (1)
122-127 F6.3 0.1nm e_EW9 [0.02/0.05] The 1-sigma error in EW9 (1)
128-134 F7.3 0.1nm EW10 [-0.91/-0.4] EW of C IV blue 1548 Abs Comp#1 (1)
135-140 F6.3 0.1nm e_EW10 [0.014/0.017] The 1-sigma error in EW10 (1)
141-147 F7.3 0.1nm EW11 [-0.22/-0.06] EW of C IV blue 1548 Abs Comp#2 (1)
148-153 F6.3 0.1nm e_EW11 [0.006/0.007] The 1-sigma error in EW11 (1)
154-160 F7.3 0.1nm EW12 [-0.74/-0.65] EW of C IV blue 1548 Abs Comp#4 (1)
161-166 F6.3 0.1nm e_EW12 [0.005/0.007] The 1-sigma error in EW12 (1)
167-173 F7.3 0.1nm EW13 [-0.61/-0.4] EW of C IV red 1550 Abs Comp#4 (1)
174-179 F6.3 0.1nm e_EW13 [0.006/0.007] The 1-sigma error in EW13 (1)
180-186 F7.3 0.1nm EW14 [-0.22/-0.07] EW of C IV red 1550 Abs Comp#5 (1)
187-192 F6.3 0.1nm e_EW14 [0.008/0.009] The 1-sigma error in EW14 (1)
193-199 F7.3 0.1nm EW15 [-0.04/0.041] EW of C IV red 1550 Abs Comp#6 (1)
200-205 F6.3 0.1nm e_EW15 [0.006/0.008] The 1-sigma error in EW15 (1)
206-212 F7.3 0.1nm EW16 [-0.98/-0.73] EW of Ly alpha 1215 Abs Comp#1 (1)
213-218 F6.3 0.1nm e_EW16 [0.011/0.014] The 1-sigma error in EW16 (1)
219-225 F7.3 0.1nm EW17 [-0.34/-0.27] EW of Ly alpha 1215 Abs Comp#2 (1)
226-231 F6.3 0.1nm e_EW17 [0.004/0.005] The 1-sigma error in EW17 (1)
232-238 F7.3 0.1nm EW18 [-0.54/-0.5] EW of Ly alpha 1215 Abs Comp#3 (1)
239-244 F6.3 0.1nm e_EW18 [0.003/0.004] The 1-sigma error in EW18 (1)
245-251 F7.3 0.1nm EW19 [-0.84/-0.76] EW of Ly alpha 1215 Abs Comp#4 (1)
252-257 F6.3 0.1nm e_EW19 [0.003/0.004] The 1-sigma error in EW19 (1)
258-264 F7.3 0.1nm EW20 [-0.31/-0.11] EW of Ly alpha 1215 Abs Comp#5 (1)
265-270 F6.3 0.1nm e_EW20 [0.005/0.006] The 1-sigma error in EW20 (1)
271-277 F7.3 0.1nm EW21 [0.06/0.16] EW of Ly alpha 1215 Abs Comp#6 (1)
278-283 F6.3 0.1nm e_EW21 [0.005/0.006] The 1-sigma error in EW21 (1)
284-290 F7.3 0.1nm EW22 [-0.94/-0.58] EW of N V blue 1238 Abs Comp#1 (1)
291-296 F6.3 0.1nm e_EW22 [0.016/0.027] The 1-sigma error in EW22 (1)
297-303 F7.3 0.1nm EW23 [-0.15/-0.04] EW of N V blue 1238 Abs Comp#2 (1)
304-309 F6.3 0.1nm e_EW23 [0.008/0.02] The 1-sigma error in EW23 (1)
310-316 F7.3 0.1nm EW24 [-0.68/-0.53] EW of N V blue 1238 Abs Comp#3 (1)
317-322 F6.3 0.1nm e_EW24 [0.007/0.015] The 1-sigma error in EW24 (1)
323-329 F7.3 0.1nm EW25 [-0.59/-0.45] EW of N V blue 1238 Abs Comp#4 (1)
330-335 F6.3 0.1nm e_EW25 [0.006/0.014] The 1-sigma error in EW25 (1)
336-342 F7.3 0.1nm EW26 [-0.08/0.002] EW of N V red 1242 Abs Comp#2 (1)
343-348 F6.3 0.1nm e_EW26 [0.006/0.012] The 1-sigma error in EW26 (1)
349-355 F7.3 0.1nm EW27 [-0.61/-0.37] EW of N V red 1242 Abs Comp#3 (1)
356-361 F6.3 0.1nm e_EW27 [0.008/0.018] The 1-sigma error in EW27 (1)
362-368 F7.3 0.1nm EW28 [-0.53/-0.38] EW of N V red 1242 Abs Comp#4 (1)
369-374 F6.3 0.1nm e_EW28 [0.007/0.014] The 1-sigma error in EW28 (1)
375-381 F7.3 0.1nm EW29 [-0.3/-0.08] EW of N V red 1242 Abs Comp#5 (1)
382-387 F6.3 0.1nm e_EW29 [0.011/0.018] The 1-sigma error in EW29 (1)
388-394 F7.3 0.1nm EW30 [-0.14/-0.007] EW of N V red 1242 Abs Comp#6 (1)
395-400 F6.3 0.1nm e_EW30 [0.01/0.016] The 1-sigma error in EW30 (1)
401-407 F7.3 0.1nm EW31 [-0.36/-0.08] EW of P V red 1126 Abs Comp#1 (1)
408-413 F6.3 0.1nm e_EW31 [0.03/0.1] The 1-sigma error in EW31 (1)
414-420 F7.3 0.1nm EW32 [-0.65/-0.52] EW of S III 1190 Abs Comp#1 (1)
421-426 F6.3 0.1nm e_EW32 [0.017/0.032] The 1-sigma error in EW32 (1)
427-433 F7.3 0.1nm EW33 [-0.13/0.015] EW of S III* 1194 Abs Comp#1 (1)
434-439 F6.3 0.1nm e_EW33 [0.012/0.019] The 1-sigma error in EW33 (1)
440-446 F7.3 0.1nm EW34 [-0.23/-0.01] EW of Si III 1206 Abs Comp#1 (1)
447-452 F6.3 0.1nm e_EW34 [0.014/0.02] The 1-sigma error in EW34 (1)
453-459 F7.3 0.1nm EW35 [-0.16/0.011] EW of Si III 1206 Abs Comp#3 (1)
460-465 F6.3 0.1nm e_EW35 [0.011/0.014] The 1-sigma error in EW35 (1)
466-472 F7.3 0.1nm EW36 [-0.12/0.025] EW of Si II 1193 Abs Comp#1 (1)
473-478 F6.3 0.1nm e_EW36 [0.014/0.026] The 1-sigma error in EW36 (1)
479-485 F7.3 0.1nm EW37 [-0.18/0.04] EW of Si II 1260 Abs Comp#1 (1)
486-491 F6.3 0.1nm e_EW37 [0.02/0.041] The 1-sigma error in EW37 (1)
492-498 F7.3 0.1nm EW38 [-0.13/0.062] EW of Si II 1304 Abs Comp#1 (1)
499-504 F6.3 0.1nm e_EW38 [0.028/0.052] The 1-sigma error in EW38 (1)
505-511 F7.3 0.1nm EW39 [-0.1/0.025] EW of Si II 1526 Abs Comp#1 (1)
512-517 F6.3 0.1nm e_EW39 [0.01/0.015] The 1-sigma error in EW39 (1)
518-524 F7.3 0.1nm EW40 [-0.14/0.005] EW of Si II* 1194 Abs Comp#1 (1)
525-530 F6.3 0.1nm e_EW40 [0.012/0.021] The 1-sigma error in EW40 (1)
531-537 F7.3 0.1nm EW41 [-0.24/0.055] EW of Si II* 1264 Abs Comp#1 (1)
538-543 F6.3 0.1nm e_EW41 [0.025/0.05] The 1-sigma error in EW41 (1)
544-550 F7.3 0.1nm EW42 [-0.12/0.073] EW of Si II* 1309 Abs Comp#1 (1)
551-556 F6.3 0.1nm e_EW42 [0.024/0.053] The 1-sigma error in EW42 (1)
557-563 F7.3 0.1nm EW43 [-0.11/0.014] EW of Si II* 1533 Abs Comp#1 (1)
564-569 F6.3 0.1nm e_EW43 [0.01/0.014] The 1-sigma error in EW43 (1)
570-576 F7.3 0.1nm EW44 [-0.4/-0] EW of Si IV blue 1393 Abs Comp#1 (1)
577-582 F6.3 0.1nm e_EW44 [0.024/0.045] The 1-sigma error in EW44 (1)
583-589 F7.3 0.1nm EW45 [-0.4/-0.02] EW of Si IV blue 1393 Abs Comp#3 (1)
590-595 F6.3 0.1nm e_EW45 [0.02/0.05] The 1-sigma error in EW45 (1)
596-602 F7.3 0.1nm EW46 [-0.32/-0.06] EW of Si IV red 1402 Abs Comp#1 (1)
603-608 F6.3 0.1nm e_EW46 [0.025/0.047] The 1-sigma error in EW46 (1)
609-615 F7.3 0.1nm EW47 [-0.18/0.07] EW of Si IV red 1402 Abs Comp#3 (1)
616-621 F6.3 0.1nm e_EW47 [0.02/0.04] The 1-sigma error in EW47 (1)
--------------------------------------------------------------------------------
Note (1): In the observed frame. Equivalent widths and 1-sigma uncertainties
are in units of Angstroms (0.1nm).
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
De Rosa et al. Paper I. 2015ApJ...806..128D 2015ApJ...806..128D Cat. J/ApJ/806/128
Edelson et al. Paper II. 2015ApJ...806..129E 2015ApJ...806..129E Cat. J/ApJ/806/129
Fausnaugh et al. Paper III. 2016ApJ...821...56F 2016ApJ...821...56F Cat. J/ApJ/821/56
Goad et al. Paper IV. 2016ApJ...824...11G 2016ApJ...824...11G
Pei et al. Paper V. 2017ApJ...837..131P 2017ApJ...837..131P Cat. J/ApJ/837/131
Starkey et al. Paper VI. 2017ApJ...835...65S 2017ApJ...835...65S
Mathur et al. Paper VII. 2017ApJ...846...55M 2017ApJ...846...55M
Kriss et al. Paper VIII. 2019ApJ...881..153K 2019ApJ...881..153K This catalog
Dehghanian et al. Paper X. 2019ApJ...877..119D 2019ApJ...877..119D
Dehghanian et al. Paper XI. 2020ApJ...898..141D 2020ApJ...898..141D
Williams et al. Paper XII. 2020ApJ...902...74W 2020ApJ...902...74W
Dehghanian et al. Paper XIII. 2021ApJ...906...14D 2021ApJ...906...14D
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 28-Jan-2021