J/ApJ/881/154 BAT AGN spectroscopic survey. XVI. Blazars (Paliya+, 2019)
BAT AGN spectroscopic survey.
XVI. General physical characteristics of BAT blazars.
Paliya V.S., Koss M., Trakhtenbrot B., Ricci C., Oh K., Ajello M., Stern D.,
Powell M.C., Urry C.M., Harrison F., Lamperti I., Mushotzky R.,
Marcotulli L., Mejia-Restrepo J., Hartmann D.
<Astrophys. J., 881, 154 (2019)>
=2019ApJ...881..154P 2019ApJ...881..154P
ADC_Keywords: Active gal. nuclei; Gamma rays; X-ray sources; Redshifts;
Magnetic fields; Spectra, optical
Keywords: galaxies: active ; galaxies: jets
Abstract:
The recently released 105-month Swift-Burst Alert Telescope (BAT)
all-sky hard X-ray survey catalog presents an opportunity to study
astrophysical objects detected in the deepest look at the entire hard
X-ray (14-195keV) sky. Here we report the results of a multifrequency
study of 146 blazars from this catalog, quadrupling the number
compared to past studies, by utilizing recent data from the
Fermi-Large Area Telescope (LAT), Swift-BAT, and archival
measurements. In our γ-ray analysis of ∼10yr of the LAT data,
101 are found as γ-ray emitters, whereas, 45 remains LAT
undetected. We model the broadband spectral energy distributions with
a synchrotron-inverse Compton radiative model. On average, BAT
detected sources host massive black holes (Mbh∼109M☉) and
luminous accretion disks (Ld∼1046erg/s). At high redshifts (z>2),
BAT blazars host more powerful jets with luminous accretion disks
compared to those detected only with Fermi-LAT. We find good agreement
in the black hole masses derived from the single-epoch optical
spectroscopic measurements and standard accretion disk modeling
approaches. Other physical properties of BAT blazars are similar to
those known for Fermi-LAT detected objects.
Description:
Our blazar sample is based on the 1632 sources included in the
105-month Swift-BAT catalog (Oh+, 2018, J/ApJS/235/4).
This paper makes use of redshift and black hole mass estimates from
the BAT AGN Spectroscopic Survey (BASS), a large effort to collect
optical spectra for all the Swift-BAT AGN. The Data Release 1 optical
spectra were obtained from a large variety of telescopes
(Koss+ 2017, J/ApJ/850/74) and can all be viewed on the BASS website.
We also include 15 new Data Release 2 redshifts measurements, from
Palomar, Southern Astrophysical Research (SOAR) telescope, and the
Very Large Telescope (VLT) that will be published shortly
(K. Oh et al. 2019, in preparation) as well as a comparison black hole
mass measurement from this catalog.
Altogether, our final sample consists of 146 BAT blazars.
Throughout this work, we use a flat cosmology with H0=67.8km/s/Mpc
and ΩM=0.308.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 59 101 The γ-ray spectral parameters of
Fermi-LAT detected BAT blazars
table4.dat 105 146 The SED parameters associated with the modeling
of the broadband emission of BAT blazars
table5.dat 43 146 Various jet powers derived from the SED modeling
--------------------------------------------------------------------------------
See also:
VIII/40 : GB6 catalog of radio sources (Gregory+ 1996)
VII/258 : Quasars and Active Galactic Nuclei (13th Ed.) (Veron+ 2010)
VII/274 : The Roma BZCAT - 5th edition (Massaro+, 2015)
J/AJ/130/896 : SUMSS Giant Radio Sources (Saripalli+, 2005)
J/ApJS/171/61 : All-Sky Survey of Flat-Spectrum Radio Sources (Healey+, 2007)
J/ApJ/699/603 : Evolution of Swift/BAT blazars (Ajello+, 2009)
J/ApJ/716/30 : SED of Fermi bright blazars (Abdo+, 2010)
J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011)
J/ApJ/748/49 : Optical spectroscopy of 1LAC broad-line blazars (Shaw+, 2012)
J/other/RMxAA/48.9 : Opt. spec. atlas of MOJAVE AGNs (Torrealba+, 2012)
J/ApJ/764/135 : Spectroscopic redshifts of BL Lac objects (Shaw+, 2013)
J/ApJ/780/73 : Redshifts of BL Lac objects from Fermi (Ajello+, 2014)
J/other/Nat/515.376 : Power of relativistic jets in blazars (Ghisellini+, 2014)
J/ApJS/218/23 : Fermi LAT third source catalog (3FGL) (Acero+, 2015)
J/ApJ/850/74 : Swift/BAT AGN Spectroscopic Survey. I. (Koss+, 2017)
J/ApJ/851/33 : Multi-wavelength analysis of CGRaBS blazars (Paliya+, 2017)
J/ApJS/233/17 : Swift/BAT AGN spectroscopic survey. V. X-ray (Ricci+, 2017)
J/ApJS/235/4 : The 105-month Swift-BAT all-sky hard X-ray survey (Oh+, 2018)
http://www.bass-survey.com/ : BASS project home page
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Name Source identifier
15- 21 E7.2 MeV/cm2/s Flux [1.2e-6/0.0004] The 0.1-300GeV energy flux
23- 29 E7.2 MeV/cm2/s e_Flux [2e-7/6.6e-6] Uncertainty in Flux
31- 34 F4.2 --- Gamma [1.27/3.43] The 0.1-300GeV Γ value (1)
36- 39 F4.2 --- e_Gamma [0.01/0.3] Uncertainty in Gamma
41- 44 F4.2 --- Beta [0/0.5] log parabola model curvature parameter
46- 49 F4.2 --- e_Beta [0/0.12] Uncertainty in Beta
51- 59 F9.2 --- TS [29.7/278383] Test statistic
from likelihood fitting
--------------------------------------------------------------------------------
Note (1): For the power law model or photon index at pivot energy
for log parabola model.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Name Source identifier
15- 18 F4.2 --- z [0.03/4.71] Redshift
20- 22 F3.1 deg theta [0.7/6] Viewing angle
24- 28 F5.2 [Msun] logMbh [0/10.04] log scale black hole mass (1)
30- 35 A6 --- n_logMbh Method used to derive logMbh (2)
37- 41 F5.2 [10-7W] logLd [0/48] log scale accretion
disk luminosity (1)
43- 47 F5.3 pc Rdis [0.006/0.8] Dissipation distance
49- 53 F5.3 pc Rblr [0/1.1] Broad Line Region size
55- 58 F4.1 --- delta [8.6/28.1] Doppler factor
60- 61 I2 --- Gamma [5/19] Bulk Lorentz factor
63- 65 F3.1 10-4T B [0.1/3.2] Magnetic field in Gauss
67- 69 F3.1 --- p [1.2/2.4] Spectral index before
break energy (3)
71- 73 F3.1 --- q [3.3/6] Spectral index after
break energy (3)
75- 77 I3 --- gammaMin [1/500] Minimum Lorentz factor (4)
79- 85 I7 --- gammab [12/1056773] Break Lorentz factor (4)
87- 93 E7.1 --- gammaMax [700/5000000] Maximum Lorentz factor (4)
95- 99 F5.2 [10-7J/cm3] logUe [-3.3/-0.13] log scale particle
energy density in units of erg/cm3
101-105 F5.1 --- CD [0.1/363] Compton dominance
--------------------------------------------------------------------------------
Note (1): A zero is given for blazars whoses SEDs are modeled with
synchrotron SSC processes only, i.e. without invoking EC mechanism.
Note (2): Method used to derive Mbh and Ld as follows:
A = assumed
D = disk fitting
O = optical spectroscopy
B = BASS spectroscopy (Koss et al. 2017, J/ApJ/850/74 ;
J. Mejia-Restrepo et al. 2019, in preparation)
G11 = Ghisellini et al. (2011MNRAS.414.2674G 2011MNRAS.414.2674G)
S12 = Shaw et al. (2012, J/ApJ/748/49)
S13 = Shaw et al. (2013, J/ApJ/764/135)
WU02 = Woo & Urry (2002ApJ...579..530W 2002ApJ...579..530W)
T12 = Torrealba et al. (2012, J/other/RMxAA/48.9)
W04 = Wang et al. (2004ApJ...615L...9W 2004ApJ...615L...9W)
N = not used.
Note (3): Of the broken power-law electron distribution.
Note (4): Of the emitting electron distribution.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Name Source identifier
15- 19 F5.2 [10-7W] logPe [42.16/45.81] log electron power (5)
21- 25 F5.2 [10-7W] logPm [41.8/46.7] log magnetic power (5)
27- 31 F5.2 [10-7W] logPr [42.8/48.1] log radiative power (5)
33- 37 F5.2 [10-7W] logPp [42.7/48.5] log proton power (5)
39- 43 F5.2 [10-7W] logPj [43/48.5] log total power;
sum of Pe, Pm, and Pp (5)
--------------------------------------------------------------------------------
Note (5): All jet powers are evaluated for a two-sided jet.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Koss et al. Paper I. 2017ApJ...850...74K 2017ApJ...850...74K Cat. J/ApJ/850/74
Berney et al. Paper II. 2015MNRAS.454.3622B 2015MNRAS.454.3622B
Oh et al. Paper III. 2017MNRAS.464.1466O 2017MNRAS.464.1466O
Lamperti et al. Paper IV. 2017MNRAS.467..540L 2017MNRAS.467..540L Cat. J/MNRAS/467/540
Ricci et al. Paper V. 2017ApJS..233...17R 2017ApJS..233...17R Cat. J/ApJS/233/17
Trakhtenbrot et al. Paper VI. 2017MNRAS.470..800T 2017MNRAS.470..800T
Ricci et al. Paper VII. 2017Natur.549..488R 2017Natur.549..488R
Shimizu et al. Paper VIII. 2018ApJ...856..154S 2018ApJ...856..154S
Powell et al. Paper IX. 2018ApJ...858..110P 2018ApJ...858..110P
Oh et al. Paper X. 2018ApJS..235....4O 2018ApJS..235....4O Cat. J/ApJS/235/4
Ichikawa et al. Paper XI. 2019ApJ...870...31I 2019ApJ...870...31I Cat. J/ApJ/870/31
Ricci et al. Paper XII. 2018MNRAS.480.1819R 2018MNRAS.480.1819R
Bar et al. Paper XIII. 2019MNRAS.489.3073B 2019MNRAS.489.3073B
Koss et al. Paper XIV. 2018Natur.563..214K 2018Natur.563..214K
Smith et al. Paper XV. 2020MNRAS.492.4216S 2020MNRAS.492.4216S
Paliya et al. Paper XVI. 2019ApJ...881..154P 2019ApJ...881..154P This catalog
Baek et al. Paper XVII. 2019MNRAS.488.4317B 2019MNRAS.488.4317B
Liu et al. Paper XVIII. 2020ApJ...896..122L 2020ApJ...896..122L
Rojas et al. Paper XIX. 2020MNRAS.491.5867R 2020MNRAS.491.5867R
Koss et al. Paper XX. 2021ApJS..252...29K 2021ApJS..252...29K Cat. J/ApJS/252/29
Koss et al. Paper XXI. 2022ApJS..261....1K 2022ApJS..261....1K
Koss et al. Paper XXII. 2022ApJS..261....2K 2022ApJS..261....2K Cat. J/ApJS/261/2
Pfeifle et al. Paper XXIII. 2022ApJS..261....3P 2022ApJS..261....3P
Oh et al. Paper XXIV. 2022ApJS..261....4O 2022ApJS..261....4O Cat. J/ApJS/261/4
Mejia-Restrepo et al. Paper XXV. 2022ApJS..261....5M 2022ApJS..261....5M Cat. J/ApJS/261/5
Koss et al. Paper XXVI. 2022ApJS..261....6K 2022ApJS..261....6K Cat. J/ApJS/261/6
Gupta et al. Paper XXVII. 2021MNRAS.504..428G 2021MNRAS.504..428G
den Brok et al. Paper XXVIII. 2022ApJS..261....7D 2022ApJS..261....7D Cat. J/ApJS/261/7
Ricci et al. Paper XXIX. 2022ApJS..261....8R 2022ApJS..261....8R Cat. J/ApJS/261/8
Ananna et al. Paper XXX. 2022ApJS..261....9A 2022ApJS..261....9A
Kakkad et al. Paper XXXI. 2022MNRAS.511.2105K 2022MNRAS.511.2105K
Kawamuro et al. Paper XXXII. 2022ApJ...938...87K 2022ApJ...938...87K
Marcotulli et al. Paper XXXIII. 2022ApJ...940...77M 2022ApJ...940...77M Cat. J/ApJ/940/77
Kawamuro et al. Paper XXXIV. 2023ApJS..269...24K 2023ApJS..269...24K Cat. J/ApJS/269/24
Caglar et al. Paper XXXV. 2023ApJ...956...60C 2023ApJ...956...60C
Powell et al. Paper XXXVI. 2022ApJ...938...77P 2022ApJ...938...77P
Ricci et al. Paper XXXVII. 2022ApJ...938...67R 2022ApJ...938...67R
Ananna et al. Paper XXXVIII. 2022ApJ...939L..13A 2022ApJ...939L..13A
Temple et al. Paper XXXIX. 2023MNRAS.518.2938T 2023MNRAS.518.2938T
Tortosa et al. Paper XL. 2023MNRAS.526.1687T 2023MNRAS.526.1687T
Ricci et al. Paper XLII. 2023ApJ...959...27R 2023ApJ...959...27R
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 29-Jan-2021