J/ApJ/882/40  Lanthanide fraction distribution of metal-poor stars  (Ji+, 2019)

The lanthanide fraction distribution in metal-poor stars: a test of neutron star mergers as the dominant r-process site. Ji A.P., Drout M.R., Hansen T.T. <Astrophys. J., 882, 40 (2019)> =2019ApJ...882...40J 2019ApJ...882...40J
ADC_Keywords: Abundances; Stars, metal-deficient; Stars, neutron Keywords: Nuclear astrophysics; Neutron stars; R-process; Stellar abundances; Transient sources Abstract: Multimessenger observations of the neutron star merger GW170817 and its kilonova proved that neutron star mergers can synthesize large quantities of r-process elements. If neutron star mergers in fact dominate all r-process element production, then the distribution of kilonova ejecta compositions should match the distribution of r-process abundance patterns observed in stars. The lanthanide fraction (XLa) is a measurable quantity in both kilonovae and metal-poor stars, but it has not previously been explicitly calculated for stars. Here we compute the lanthanide fraction distribution of metal-poor stars ([Fe/H]<-2.5) to enable comparison to current and future kilonovae. The full distribution peaks at log XLa~-1.8, but r-process-enhanced stars ([Eu/Fe]>0.7) have distinctly higher lanthanide fractions: logXLa≳-1.5. We review observations of GW170817 and find general consensus that the total logXLa=-2.2±0.5, somewhat lower than the typical metal-poor star and inconsistent with the most highly r-enhanced stars. For neutron star mergers to remain viable as the dominant r-process site, future kilonova observations should be preferentially lanthanide-rich (including a population of ∼10% with logXLa>-1.5). These high-XLa kilonovae may be fainter and more rapidly evolving than GW170817, posing a challenge for discovery and follow-up observations. Both optical and (mid-)infrared observations will be required to robustly constrain kilonova lanthanide fractions. If such high-XLa kilonovae are not found in the next few years, that likely implies that the stars with the highest r-process enhancements have a different origin for their r-process elements. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table4.dat 79 254 Star data table refs.dat 69 38 References -------------------------------------------------------------------------------- See also: J/ApJ/530/783 : The r-process enriched giant HD 115444 (Westin+, 2000) J/A+A/416/1117 : Abundances in the early Galaxy (Cayrel+, 2004) J/ApJ/617/1091 : La and Eu abundances in 85 stars (Simmerer+, 2004) J/A+A/439/129 : HERES II. Spectroscopic analysis (Barklem+, 2005) J/ApJ/645/613 : Abundances of HD 221170 (Ivans+, 2006) J/AJ/132/85 : Equivalent width of 33 metal-poor RHB (Preston+, 2006) J/ApJ/681/1524 : Detailed abundances for 28 metal-poor stars (Lai+, 2008) J/A+A/516/A46 : HE 2327-5642 abundance analysis (Mashonkina+, 2010) J/ApJ/724/975 : Heavy elements abund. of metal-poor stars (Roederer+, 2010) J/ApJ/711/573 : Abundances in a halo stellar stream (Roederer+, 2010) J/ApJ/742/54 : CASH project II. Extremely metal-poor stars (Hollek+, 2011) J/A+A/548/A34 : Abundances of carbon-enhanced metal-poor stars (Allen+, 2012) J/ApJ/778/56 : Hamburg/ESO Survey extremely metal-poor stars (Cohen+, 2013) J/ApJ/771/67 : Abundances for 97 metal-poor stars. II. (Ishigaki+, 2013) J/ApJ/775/L27 : Chemical abundances in a metal-poor RGB star (Johnson+, 2013) J/ApJ/787/10 : Solar s-process contrib. with GCE model (Bisterzo+, 2014) J/ApJ/797/44 : Evolution and nucleosynthesis of AGB stars (Fishlock+, 2014) J/A+A/569/A43 : HE 2252-4225 abundance analysis (Mashonkina+, 2014) J/ApJ/797/21 : Carbon-enhanced metal-poor stars (Placco+, 2014) J/AJ/147/136 : Stars of very low metal abundance. VI. (Roederer+, 2014) J/ApJ/807/171 : SkyMapper Survey metal-poor star spectrosc. (Jacobson+, 2015) J/ApJ/798/110 : Equivalent widths of LAMOST metal-poor stars (Li+, 2015) J/MNRAS/460/884 : EMBLA survey. Galactic bulge metal-poor stars (Howes+, 2016) J/ApJ/830/93 : Abund. of the Ret II brightest red giant members (Ji+, 2016) J/AJ/151/82 : The 4 brightest red giants in Ret 2 (Roederer+, 2016) J/ApJ/838/44 : Abundances of the brightest member of Tuc III (Hansen+, 2017) J/A+A/607/A91 : CS 29497-004 abundances (Hill+, 2017) J/ApJ/844/18 : RAVE J203843.2-002333 high-resolution spec. (Placco+, 2017) J/ApJ/851/L21 : UV-NIR obs. compilation of GW170817 (Villar+, 2017) J/ApJ/869/50 : Barium abundances of red giant branch stars (Duggan+, 2018) J/ApJ/858/92 : RPA Southern Pilot Search of 107 Stars (Hansen+, 2018) J/AJ/156/179 : Highly r-process-enhanced field stars (Roederer+, 2018) J/ApJ/865/129 : Abundance analysis of HD 222925 (Roederer+, 2018) J/ApJ/868/110 : R-Process Alliance: 1st release in Gal. halo (Sakari+, 2018) Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 24 A24 --- Star Star (1) 26- 31 A6 --- Ref Reference (see refs.dat file) 33- 34 I2 --- Nel [3/33] Number of elements 36- 40 F5.2 --- [Fe/H] [-4.1/-2.3] Abundance, [Fe/H] 42- 46 F5.2 --- [Sr/Fe] [-1.6/1.8]? Abundance, [Sr/Fe] 48- 52 F5.2 --- [Ba/Fe] [-1.7/2.3] Abundance, [Ba/Fe] 54- 58 F5.2 --- [Eu/Fe] [-0.6/2.8] Abundance, [Eu/Fe] 60- 64 F5.2 --- logXLa-A07 [-3.1/-1]? log, XLa fraction, Arnould et al. (2007PhR...450...97A 2007PhR...450...97A) (2) 66- 70 F5.2 --- logXLa-S08 [-3.5/-1.1]? log, XLa fraction, Sneden et al. (2008ARA&A..46..241S 2008ARA&A..46..241S) (2) 72- 79 A8 --- Sample Sample (3) -------------------------------------------------------------------------------- Note (1): CS22783-055 is a misprint for CS22873-055; corrected at CDS. Note (2): The lanthanide fraction (XLa) is the mass ratio between the high-opacity lanthanides (atomic numbers Z=57-71) and the total mass. See Section 2 for the determination of the lanthanide fraction distribution from metal-poor stars. Note (3): Sample as follows: H18 = Hansen et al. (2018, J/ApJ/858/92); JINAbase = Abohalima & Frebel (2018ApJS..238...36A 2018ApJS..238...36A); R18 = Roederer et al. (2018, J/AJ/156/179); S18 = Sakari et al. (2018, J/ApJ/868/110). ------------------------------------------------------------------------ Sample Total Metal-poor Metal-poor Metal-poor star r-dominated r-dominated r-dominated number Has Sr, Ba, Eu ≥5 neutron-capture elements ------------------------------------------------------------------------ JINAbase 426 146 143 120 R18 83 56 45 30 S18 125 32 32 30 H18 107 39 31 - ------------------------------------------------------------------------ Metal-poor: [Fe/H]<-2.5; r-dominated: [Ba/Eu]<-0.4. For the S18 sample, we instead use [Fe/H]<-2.3 to account for non-LTE metallicities. -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Ref Reference code 8- 26 A19 --- BibCode Bibcode of the reference 28- 48 A21 --- Auth First author's name 50- 69 A20 --- Cat VizieR catalog reference -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 09-Feb-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line