J/ApJ/884/107 The BAM pipeline applied to K2 LCs of red giants (Zinn+, 2019)
The Bayesian Asteroseismology data Modeling pipeline and its application to
K2 data.
Zinn J.C., Stello D., Huber D., Sharma S.
<Astrophys. J., 884, 107-107 (2019)>
=2019ApJ...884..107Z 2019ApJ...884..107Z (SIMBAD/NED BibCode)
ADC_Keywords: Stars, giant; Asteroseismology; Optical; Infrared sources; Models
Keywords: Astronomy software; Asteroseismology; Astronomy data analysis
Giant stars
Abstract:
We present the Bayesian Asteroseismology data Modeling (BAM) pipeline,
an automated asteroseismology pipeline that returns global oscillation
parameters and granulation parameters from the analysis of photometric
time series. BAM also determines whether a star is likely to be a
solar-like oscillator. We have designed BAM to specially process K2
light curves, which suffer from unique noise signatures that can
confuse asteroseismic analysis, though it may be used on any
photometric time series-including those from Kepler and TESS. We
demonstrate that the BAM oscillation parameters are consistent within
∼1.53%(random) ±0.2%(systematic) and 1.51%(random)
±0.6%(systematic) for νmax and Δν with benchmark
results for typical K2 red giant stars in the K2 Galactic Archaeology
Program's (GAP) Campaign 1 sample. Application of BAM to 13,016 K2
Campaign 1 targets not in the GAP sample yields 104 red giant
solar-like oscillators. Based on the number of serendipitous giants we
find, we estimate an upper limit on the average purity in dwarf
selection among C1 proposals of ∼99%, which could be lower when
considering incompleteness in BAM detection efficiency and
proper-motion cuts specific to C1 Guest Observer proposals.
Description:
In this paper, we work with two sets of K2 light curves: (1) the
Campaign 1 (C1) target sample from the K2 Galactic Archaeology Program
(GAP; Stello+ 2015ApJ...809L...3S 2015ApJ...809L...3S & 2017, J/ApJ/835/83), which
comprises 8630 stars, and (2) all non-GAP C1 targets, 13016 in
total. Results from the Bayesian Asteroseismology data Modeling (BAM)
for the former sample have been published in Stello+ (2017, J/ApJ/835/83).
We apply the BAM pipeline to 13016 C1 targets with VJ light curves not
in the GAP sample. We identify 31 red giants that have detectable
oscillation excesses. An additional 73 objects are potential giants.
See Section 4.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 196 104 Campaign 1 non-GAP BAM asteroseismic parameters
for giants and giant candidates
--------------------------------------------------------------------------------
See also:
II/246 : 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)
IV/34 : K2 Ecliptic Plane Input Catalog (EPIC) (Huber+, 2017)
J/A+A/506/465 : Solar-like oscillations in red giants (Hekker+, 2009)
J/ApJ/765/L41 : Asteroseismic classification of KIC objects (Stello+, 2013)
J/A+A/579/A19 : K2 Variable Catalogue (Armstrong+, 2015)
J/ApJS/224/2 : K2 EPIC stellar properties for 138600 targets (Huber+, 2016)
J/ApJ/835/83 : K2 GAP data release. I. Campaign 1 (Stello+, 2017)
J/ApJ/857/119 : Asymmetry of oscillations in 43 Kepler stars (Benomar+, 2018)
J/ApJS/236/42 : Asteroseismology of ∼16000 Kepler red giants (Yu+, 2018)
J/ApJS/239/32 : APOKASC-2 catalog of Kepler evolved stars (Pinsonneault+, 2018)
J/MNRAS/476/3233 : 14983 Kepler red giants (Hon+, 2018)
J/ApJ/889/L34 : Oscillations in red giants from TESS data (Silva+, 2020)
J/AJ/160/18 : M giant stars asteroseismology with Kepler+APOGEE (Auge+, 2020)
J/ApJS/251/23 : K2 GAP DR2: campaigns 4, 6 & 7 (Zinn+, 2020)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 I9 --- EPIC [201147434/201944519] EPIC identifier
11- 26 A16 --- 2MASS 2MASS name (HHMMSSss+DDMMSSs; J2000)
28- 37 F10.6 deg RAdeg [166.6/181.2] Right ascension (J2000)
39- 47 F9.6 deg DEdeg [-5.4/8.4] Declination (J2000)
49- 55 F7.3 uHz numax [3/250] Frequency of maximum power
(νmax) (1)
57- 61 F5.3 uHz e_numax [0.1/8]? numax uncertainty
63- 68 F6.3 uHz Delnu [0.7/17.4]? Overtone frequency separation
(Δν)
70- 74 F5.3 uHz e_Delnu [0.002/1.4]? Delnu uncertainty
76- 84 E9.4 ppm2.uHz-1 Amax [153/2.6e+6] Amax value (2)
86- 94 E9.4 ppm2.uHz-1 e_Amax [18/931200] Amax uncertainty,
σAmax
96- 104 E9.4 ppm Sigmeso [226/5359] Amplitude of mesogranulation
component, σmeso (2)
106- 114 E9.4 ppm e_Sigmeso [8/555] Sigmeso uncertainty,
σσmeso
116- 124 E9.4 uHz-1 taumeso [0.007/0.4] Timescale of mesogranulation
component, τmeso (2)
126- 134 E9.4 uHz-1 e_taumeso [0.0004/0.06] taumeso uncertainty,
στmeso
136- 144 E9.4 ppm Siggran [180/3295] Amplitude of granulation
component, σgran (2)
146- 154 E9.4 ppm e_Siggran [7/419] Siggran uncertainty,
σσgran
156- 164 E9.4 uHz-1 taugran [0.0015/0.12] Timescale of granulation
component, τgran (2)
166- 174 E9.4 uHz-1 e_taugran [0.0001/0.02] taugran uncertainty,
στgran
176- 184 E9.4 ppm2.uHz-1 WN [0.3/190700] White-noise term (2)
186- 194 E9.4 ppm2.uHz-1 e_WN [0.4/2827] WN uncertainty,
σWN
196 I1 --- Giant [1/2] Red giant? (2=red giant; or
1=potential giant)
--------------------------------------------------------------------------------
Note (1): Stars with νmax≲4µHz should be considered upper limits,
as mentioned in the text, and are not assigned errors.
Note (2): See Equations 1 and 2 in Section 3.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Emmanuelle Perret [CDS] 26-Oct-2023