J/ApJ/886/20   Bayesian time-resolved spectra of Fermi GBM pulses   (Yu+, 2019)

Bayesian time-resolved spectroscopy of GRB pulses. Yu H.-F., Dereli-Begue H., Ryde F. <Astrophys. J., 886, 20 (2019)> =2019ApJ...886...20Y 2019ApJ...886...20Y
ADC_Keywords: GRB Keywords: catalogs ; gamma-ray burst: general ; methods: statistical Abstract: We performed time-resolved spectroscopy on a sample of 38 single pulses from 37 gamma-ray bursts detected by the Fermi/Gamma-ray Burst Monitor during the first 9yr of its mission. For the first time a fully Bayesian approach is applied. A total of 577 spectra are obtained and their properties studied using two empirical photon models, namely the cutoff power law (CPL) and Band model. We present the obtained parameter distributions, spectral evolution properties, and parameter relations. We also provide the result files containing this information for usage in further studies. It is found that the CPL model is the preferred model, based on the deviance information criterion and the fact that it consistently provides constrained posterior density maps. In contrast to previous works, the high-energy power-law index of the Band model, β, has in general a lower value for the single pulses in this work. In particular, we investigate the individual spectrum in each pulse, that has the largest value of the low-energy spectral indexes, α. For these 38 spectra, we find that 60% of the α values are larger than -2/3, and thus incompatible with synchrotron emission. Finally, we find that the parameter relations show a variety of behaviors. Most noteworthy is the fact that the relation between α and the energy flux is similar for most of the pulses, independent of any evolution of the other parameters. Description: In summary, we have defined a sample of 38 single pulses from 37 GRBs out of 2050 Fermi/GBM detected bursts from 2008 July until 2017 March. A total of 577 time-resolved spectra were obtained and their spectral properties investigated using a fully Bayesian method. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 105 38 GRB, detectors, source and background intervals used in the analysis table3.dat 309 577 Time-resolved spectral analysis results -------------------------------------------------------------------------------- See also: J/ApJS/166/298 : Spectral cat. of bright BATSE gamma-ray bursts (Kaneko+, 2006) J/ApJ/756/112 : Fermi/GBM GRB time-resolved spectral analysis (Lu+, 2012) J/ApJS/216/32 : Localizations of GRBs with Fermi GBM (Connaughton+, 2015) J/A+A/588/A135 : Fermi/GBM GRB time-resolved spectral catalog (Yu+, 2016) J/ApJS/223/28 : The third Fermi/GBM GRB catalog (6yr) (Bhat+, 2016) J/ApJ/893/46 : The fourth Fermi-GBM GRB catalog: 10yrs (von Kienlin+, 2020) http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html : Fermi GBM burst online catalog Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I09 --- Fermi [81009140/170114917] GRB identifier (<Fermi bnYYMMDDddd> in Simbad) 11- 20 A10 --- Det Detectors (1) 22- 24 I3 s b_delTs [-5/160] Source lower range ΔTsrc 26- 28 I3 s B_delTs [9/200] Source upper range ΔTsrc 30- 32 I3 s b_delTb1 [-40/100] First background lower range ΔTbkg,1 34- 36 I3 s B_delTb1 [-15/150] First background upper range ΔTbkg,1 38- 40 I3 s b_delTb2 [0/250]? Second background lower range ΔTbkg,2 42- 44 I3 s B_delTb2 [30/300]? Second background upper range ΔTbkg,2 46- 47 I2 s b_delTb3 [0/60]? Third background lower range ΔTbkg,3 49- 50 I2 s B_delTb3 [80/80]? Third background upper range ΔTbkg,3 52- 53 I2 --- N [8/30] The number of time bins using Bayesian blocks across the source interval 55- 56 I2 --- Ns [5/19] The number of time bins with statistical significance of at least 20 58 A1 --- a-Ep α-Ep type (2) 60- 64 F5.2 --- r(a-Ep) [-0.86/0.93] Spearman's rank coefficient for α-Ep 66 I1 --- F-Ep [1/3] F-Ep type (2) 68- 72 F5.2 --- r(F-Ep) [-0.83/0.95] Spearman's rank coefficient for F-Ep 74 I1 --- F-a [1/3] F-α type (2) 76- 80 F5.2 --- r(F-a) [-0.71/0.98] Spearman's rank coefficient for F-α 82- 105 A24 --- Evol Evolutionary trend of the peak energy (3) -------------------------------------------------------------------------------- Note (1): The detector in brackets is the brightest one, used for background and Bayesian block fitting. Note (2): The type of relations for parameter pairs α-Ep, F-Ep, and F-α, where α is the low-energy power-law index, Ep is the spectral peak, and F is the energy flux. Note (3): Spectral evolution is detailed in Section 3.3. i.t. = pure intensity tracking evolution h.t.s. = pure hard-to-soft evolution s.t.h. = soft-to-hard evolution -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [GRB] 4- 12 I9 --- Fermi GRB identifier 13 A1 --- --- [;] 15- 23 A9 --- m_Fermi Pulse identifier 25- 30 F6.2 s tStart [-5/194] Start time of Bayesian block time bin 32- 37 F6.2 s tStop [-4/200] Stop time of Bayesian block time bin 39- 44 F6.2 --- S [-4.4/197] Significance of the bin 46- 52 E7.2 ph/s/cm2/keV K [0.009/737] Best-fit CPL normalization parameter 54- 60 E7.2 ph/s/cm2/keV E_K [0.0002/427] Upper uncertainty in K 62- 68 E7.2 ph/s/cm2/keV e_K [0.007/401] Lower uncertainty in K 70- 74 F5.2 --- alpha [-2.9/0.5] Best-fit CPL low-energy power-law index 76- 79 F4.2 --- E_alpha [0/0.7] Uncertainty in alpha 81- 84 F4.2 --- e_alpha [0.02/1.1] Uncertainty in alpha 86- 93 F8.2 keV Ec [14/44331] Best-fit CPL cutoff energy 95- 102 F8.2 keV E_Ec [0.8/13666] Upper uncertainty in Ec 104- 111 F8.2 keV e_Ec [2.1/35094] Lower uncertainty in Ec 113- 120 F8.2 keV Ep [-4024/57237] Derived CPL peak energy 122- 129 F8.2 keV E_Ep [0.04/17645] Upper uncertainty in Ep 131- 138 F8.2 keV e_Ep [0.2/45310] Lower uncertainty in Ep 140- 146 E7.2 mW/m2 F [1e-9/2.6e-5] Derived CPL energy flux; erg/s/cm2 148- 156 E9.2 mW/m2 E_F [1e-8/0.00011] Upper uncertainty in F 158- 164 E7.2 mW/m2 e_F [1e-9/1.3e-5] Lower uncertainty in F 166- 172 E7.2 ph/s/cm2/keV K-B [0.0008/405] Best-fit BAND normalization parameter 174- 180 E7.2 ph/s/cm2/keV E_K-B [2e-5/154] Upper uncertainty in K-B 182- 188 E7.2 ph/s/cm2/keV e_K-B [0.0005/402] Lower uncertainty in K-B 190- 194 F5.2 --- alpha-B [-1.8/2.5] Best-fit BAND low-energy power-law index 196- 199 F4.2 --- E_alpha-B [0.01/3.3] Upper uncertainty in alpha-B 201- 204 F4.2 --- e_alpha-B [0/3.1] Lower uncertainty in alpha-B 206- 210 F5.2 --- Beta-B [-4.7/-1.6] Best-fit BAND high-energy power-law index 212- 215 F4.2 --- E_Beta-B [0.03/1.7] Upper uncertainty in Beta-B 217- 220 F4.2 --- e_Beta-B [0/1.7] Lower uncertainty in Beta-B 222- 228 F7.2 keV Ep-B [10.4/8499] Derived BAND peak energy 230- 236 F7.2 keV E_Ep-B [0.08/2007] Upper uncertainty in Ep-B 238- 244 F7.2 keV e_Ep-B [0.4/4879] Lower uncertainty in Ep-B 246- 252 E7.2 mW/m2 F-B [4.2e-9/0.96]? Derived BAND energy flux; erg/s/cm2 (1) 254- 262 E9.2 mW/m2 E_F-B [6.2e-8/87]? Upper uncertainty in F-B (1) 264- 271 E8.2 mW/m2 e_F-B [9.4e-10/8.5e-6]? Lower uncertainty in F-B (1) 273- 286 F14.2 --- DeltaDIC [-145665983/3843] Difference in deviance information criterion between CPL and BAND 288- 295 F8.2 --- PDIC [-1123/3] Effective number of CPL parameters 297- 309 F13.2 --- PDIC-B [-145665980/4] Effective number of BAND parameters -------------------------------------------------------------------------------- Note (1): A blank means that a reliable value of the flux could not be computed due to large errors in the fitted parameters. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 31-Mar-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line