J/ApJ/887/5 COS CGM compendium (CCC). III. z≤1 Lyα syst. (Lehner+, 2019)

The COS CGM compendium. III. Metallicity and physical properties of the cool circumgalactic medium at z≤1. Lehner N., Wotta C.B., Howk J.C., O'Meara J.M., Oppenheimer B.D., Cooksey K.L. <Astrophys. J., 887, 5 (2019)> =2019ApJ...887....5L 2019ApJ...887....5L
ADC_Keywords: QSOs; Spectra, ultraviolet; H I data; Redshifts; Abundances; Intergalactic medium Keywords: Quasar absorption line spectroscopy ; Metallicity ; Galaxy environments ; Circumgalactic medium Abstract: We characterize the metallicities and physical properties of cool, photoionized gas in a sample of 152 z≤1 strong Lyα forest systems (SLFSs, absorbers with 15<logNHI<16.2). The sample is drawn from our Cosmic Origins Spectrograph (COS) circumgalactic medium compendium (CCC), an ultraviolet survey of HI-selected circumgalactic gas around z≤1 galaxies that targets 261 absorbers with 15<logNHI<19. We show that the metallicity probability distribution function of the SLFSs at z≤1 is unimodal, skewed to low metallicities with a mean and median of [X/H]=-1.47 and -1.18dex. Very metal-poor gas with [X/H]<-1.4 represents about half of the population of absorbers with 15<logNHI≤18, while it is rare at higher NHI. Thus, there are important reservoirs of primitive (though not pristine) diffuse ionized gas around z≤1 galaxies. The photoionized gas around z≤1 galaxies is highly inhomogeneous based on the wide range of metallicities observed (-3≤[X/H]≤+0.4) and the fact that there are large metallicity variations (factors of 2 to 25) for most of the closely spaced absorbers (Δv≤300km/s) along the same sightlines. These absorbers show a complex evolution with redshift and HI column density, and we identify subtle cosmic evolution effects that affect the interpretation of metallicity distributions and comparison with other absorber samples. We discuss the physical conditions and cosmic baryon and metal budgets of the CCC absorbers. Finally, we compare the CCC results to recent cosmological zoom simulations and explore the origins of the 15<logNHI<19 absorbers within the Evolution and Assembly of GaLaxies and their Environments (EAGLE) high-resolution simulations. Description: As presented in Paper I (Lehner+, 2018, J/ApJ/866/33), the QSO spectra for the strong Lyα forest system (SLFS) sample were retrieved from the HST/COS G130M and/or G160M archive. Several of these QSOs were also observed from the ground with high-resolution Keck/HIRES and Very Large Telescope (VLT)/UVES spectra. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 115 261 Metallicities of the absorbers in the circumgalactic medium compendium (CCC) sample table5.dat 124 261 Physical properties of the CCC sample table8.dat 74 2248 Summary of the MCMC inputs for the absorbers in CCC -------------------------------------------------------------------------------- See also: J/ApJ/559/654 : Lyα absorption systems. V. (Chen+, 2001) J/ApJ/635/123 : The SDSS-DR3 damped Lyα survey (Prochaska+, 2005) J/ApJ/676/262 : PKS1302-102 intergalactic absorption system (Cooksey+, 2008) J/ApJ/721/1 : Keck ESI observations of Lyα systems (Penprase+, 2010) J/ApJ/718/392 : SDSS Lyman limit systems at z∼3.5 (Prochaska+, 2010) J/ApJS/195/16 : HST survey for Lyman limit systems. I. (O'Meara+, 2011) J/ApJ/740/91 : Lyα and OVI in galaxies around QSOs (Prochaska+, 2011) J/ApJ/755/89 : Metallicities of damped Lyα systems (Rafelski+, 2012) J/ApJ/770/138 : Metallicities of Lyman limit systems and DLA (Lehner+, 2013) J/ApJ/765/137 : HST survey for Lyman limit systems. II. (O'Meara+, 2013) J/MNRAS/445/2061 : Absorption in multiphase circumgal. medium (Liang+, 2014) J/MNRAS/437/2017 : HI-galaxy cross-correlation at z≲1 (Tejos+, 2014) J/ApJ/817/111 : HST/COS survey of z<0.9 AGNs. I. (Danforth+, 2016) J/ApJ/833/270 : Lyman limit system metallicities (Glidden+, 2016) J/ApJ/833/283 : HI-selected Lyman limit system metallicities (Lehner+, 2016) J/MNRAS/458/4074 : UVES Advanced Data Products QSO Sample. VI. (Quiret+, 2016) J/ApJS/230/6 : HST -COS & -STIS absorption-line sp. II. (Keeney+, 2017) J/ApJ/866/33 : The COS CGM compendium. I. Initial results (Lehner+, 2018) J/ApJ/872/81 : COS CGM Compendium (CCC). II. Lyman syst. (Wotta+, 2019) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 --- QSO QSO identifier (JHHMMSS.ss+DDMMSS.s) 21 A1 --- Prox [a] Proximity flag (1) 23- 30 F8.6 --- zabs [0.08/1.1] Redshift of the absorber 32- 36 F5.2 [cm-2] logNHI [15/19] log H I column density 38- 41 F4.2 [cm-2] e_logNHI [0.01/0.3] Uncertainty in logNHI 43 A1 --- lb[X/H] Limit flag on lo[X/H] 45- 49 F5.2 [-] b_[X/H] [-4.75/0.11] Lower bound in [X/H] (2) 51 A1 --- l_[X/H] Limit flag on [X/H] 53- 57 F5.2 [-] [X/H] [-3.76/1.1] Median log absorber metallicity 59 A1 --- lB[X/H] Limit flag on up[X/H] 61- 65 F5.2 [-] B_[X/H] [-2.9/2.3] Upper bound in [X/H] (2) 67 A1 --- lblogU Limit flag on lologU 69- 73 F5.2 [-] b_logU [-4.5/-0.79] Lower bound in logU (2) 75 A1 --- l_logU Limit flag on logU 77- 81 F5.2 [-] logU [-4.4/-0.65] Median log ionization parameter 82 A1 --- u_logU [:] Prior flag on logU (3) 84 A1 --- lBlogU Limit flag on uplogU 86- 90 F5.2 [-] B_logU [-4.3/-0.6] Upper bound in logU (2) 92 A1 --- lb[C/a] Limit flag on lo[C/a] 94- 98 F5.2 [-] b_[C/a] [-0.97/0.74]? Lower bound in [C/a] (2) 100 A1 --- l_[C/a] Limit flag on [C/a] 102-106 F5.2 [-] [C/a] [-0.84/0.9]? Median log C/α abundance ratio 107 A1 --- u_[C/a] [:] Prior flag in [C/a] (4) 109 A1 --- lB[C/a] Limit flag on up[c/a] 111-115 F5.2 [-] B_[C/a] [-0.66/0.98]? Upper bound in [C/a] (2) -------------------------------------------------------------------------------- Note (1): a = Proximate absorbers, i.e., absorbers with Δv=(zem-zabs)/(1+zabs)c<3000km/s (see Paper I; Lehner+, 2018, J/ApJ/866/33). Note (2): The lower to upper bounds for each quantity represent the 68% CI for detections and the 80% CI for the upper or lower limits. Note (3): Implies that a logU Gaussian prior was used to determine the properties of the absorber. Note (4): Implies that a [C/alpha] prior was used to determine the properties of the absorber. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 --- QSO QSO identifier (JHHMMSS.ss+DDMMSS.s) 21- 28 F8.6 --- zabs [0.08/1.1] Redshift of the absorber 30- 34 F5.2 [cm-2] logNHI [15/19] log neutral hydrogen column density 36- 39 F4.2 [cm-2] e_logNHI [0.01/0.3] Uncertainty in logNHI 41- 45 F5.2 [cm-2] b_logNH [16.7/21.42] Lower bound in logNH (1) 47- 51 F5.2 [cm-2] logNH [17/21.53] Median log hydrogen column density 53- 57 F5.2 [cm-2] B_logNH [17.2/21.6] Upper bound in logNH (1) 59 A1 --- lblognH Limit flag on b_lognH 61- 65 F5.2 [cm-3] b_lognH [-4.5/-0.88] Lower bound in lognH (1) 67 A1 --- l_lognH Limit flag on lognH 69- 73 F5.2 [cm-3] lognH [-4.5/-0.8] Median log hydrogen density 74 A1 --- u_lognH [:] Prior flag on lognH (2) 76 A1 --- lBlognH Limit flag on uplognH 78- 82 F5.2 [cm-3] B_lognH [-4.32/-0.73] Upper bound in lognH (1) 84- 87 F4.2 [K] b_logT [2.1/4.75] Lower bound in logT (1) 89- 92 F4.2 [K] logT [2.6/4.77] Median log temperature 94- 97 F4.2 [K] B_logT [3.75/4.77] Upper bound in logT (1) 99-106 F8.2 kpc b_Scale [0/19869] Lower bound on Scale (1) 108-115 F8.2 kpc Scale [0/32058] Median linear scale 117-124 F8.2 kpc B_Scale [0/37862] Upper bound on Scale (1) -------------------------------------------------------------------------------- Note (1): The lower to upper bounds for each quantity represent the 68% CI for detections and 80% CI for the upper or lower limits. Note (2): Implies that a logU Gaussian prior was used to determine the properties of the absorber (see Section 2.2). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- Type Absorber type (1) 7- 25 A19 --- QSO Quasar identifier (JHHMMSSss+DDMMSS.s) 26- 35 A10 --- ID Unique identifier within QSO names (with zN.NNNNNN = zabs) 37- 44 F8.6 --- zabs [0.08/1.1] Redshift of the absorber 46- 53 F8.6 --- e_zabs [1e-6/0.001] Uncertainty in zabs 55- 60 A6 --- Ion Ion identifier 62- 66 F5.2 [cm-2] logN [10.87/19] log Ion column density 68- 71 F4.2 [cm-2] e_logN [0.01/0.6] Uncertainty in logN 73- 74 I2 --- Flag [-3/0]? Column density flag (2) -------------------------------------------------------------------------------- Note (1): Type as follows: SLFSs = strong Lyα forest systems (1535 occurrences) pLLSs = partial Lyman limit systems (572 occurrences) LLSs = Lyman limit systems (141 occurrences) Note (2): Flag as follows: 0 = detection (not saturated or contaminated; 648 occurrences); -1 = upper limit; -2 = lower limit (due to saturation of the line). -------------------------------------------------------------------------------- History: From electronic version of the journal References: Lehner et al. Paper I. 2018ApJ...866...33L 2018ApJ...866...33L Cat. J/ApJ/866/33 Wotta et al. Paper II. 2019ApJ...872...81W 2019ApJ...872...81W Cat. J/ApJ/872/81
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 05-May-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line