J/ApJ/895/126 ALMA observation of 152 1-11Myr aged stars (Hendler+, 2020)
The Evolution of Dust Disk Sizes from a Homogeneous Analysis of 1-10Myr old
Stars.
Hendler N., Pascucci I., Pinilla P., Tazzari M., Carpenter J., Malhotra R.,
Testi L.
<Astrophys. J., 895, 126 (2020)>
=2020ApJ...895..126H 2020ApJ...895..126H
ADC_Keywords: Clusters, open; Stars, pre-main sequence; Effective temperatures;
Stars, masses; Stars, diameters; Infrared
Keywords: Protoplanetary disks ; Solar system formation ;
Pre-main sequence stars ; Open star clusters ; Dust continuum emission
Abstract:
We utilize ALMA archival data to estimate the dust disk size of 152
protoplanetary disks in Lupus (1-3Myr), Chamaeleon I (2-3Myr), and
Upper-Sco (5-11Myr). We combine our sample with 47 disks from Tau/Aur
and Oph whose dust disk radii were estimated, as here, through fitting
radial profile models to visibility data. We use these 199
homogeneously derived disk sizes to identify empirical disk-disk and
disk-host property relations as well as to search for evolutionary
trends. In agreement with previous studies, we find that dust disk
sizes and millimeter luminosities are correlated, but show for the
first time that the relationship is not universal between regions. We
find that disks in the 2-3Myr old ChaI are not smaller than disks in
other regions of similar age, and confirm the Barenfeld et al. finding
that the 5-10Myr USco disks are smaller than disks belonging to
younger regions. Finally, we find that the outer edge of the solar
system, as defined by the Kuiper Belt, is consistent with a population
of dust disk sizes which have not experienced significant truncation.
Description:
We utilize Atacama Large Millimeter/submillimeter Array (ALMA)
archival data to estimate the dust disk size of 152 protoplanetary
disks in Lupus, ChamaeleonI, and Upper-Sco.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table7.dat 115 141 Stellar and disk properties
table10.dat 218 152 Modeling parameters
--------------------------------------------------------------------------------
See also:
I/347 : Distances to 1.33 billion stars in Gaia DR2 (Bailer-Jones+, 2018)
J/AJ/117/354 : OB associations from Hipparcos (de Zeeuw+, 1999)
J/AJ/124/404 : Upper Scorpius OB association Li survey. II. (Preibisch, 2002)
J/AJ/130/1733 : Optical spectroscopy of ρ Oph stars (Wilking+, 2005)
J/ApJ/675/1375 : IRAC/MIPS photometry in Cha I (Luhman+, 2008)
J/ApJS/177/551 : Spitzer c2d survey of Lupus dark clouds (Merin+, 2008)
J/ApJ/688/377 : Low-mass objects in Upper Scorpius. II. (Slesnick+, 2008)
J/ApJ/746/154 : Improved kinematic parallaxes Sco-Cen members (Pecaut+, 2012)
J/ApJ/771/129 : Submillimetric Class II sources of Taurus (Andrews+, 2013)
J/A+A/561/A2 : 36 accreting YSOs emission lines (Alcala+, 2014)
J/ApJ/828/46 : ALMA survey of Lupus protoplanetary disks. I. (Ansdell+, 2016)
J/ApJ/827/142 : ALMA observations of GKM stars in Upper Sco (Barenfeld+, 2016)
J/ApJ/831/125 : ALMA 887µm obs. ChaI star-forming region (Pascucci+, 2016)
J/A+A/602/A33 : X-Shooter spectroscopy of YSOs in Lupus (Frasca+, 2017)
J/A+A/601/A97 : Gaia-ESO Survey: Cha I members (Sacco+, 2017)
J/ApJ/845/44 : 340GHz SMA obs. 50 nearby protoplanetary disk (Tripathi+,2017)
J/ApJ/869/L41 : DSHARP I. Sample, ALMA obs. log and overview (Andrews+, 2018)
J/ApJ/869/L42 : DSHARP. II. Annular substructures data (Huang+, 2018)
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 17 A17 --- 2MASS 2MASS identifier
19- 23 A5 --- Region Region identifier
25- 30 F6.2 pc Dist [94.4/208.26] Distance
32- 36 F5.2 pc E_Dist [0.65/31.0] Upper uncertainty in Dist
38- 42 F5.2 pc e_Dist [0.64/20.0] Lower uncertainty in Dist
44- 48 F5.2 Lsun logL* [-2.52/0.71] log stellar luminosity
50- 53 F4.2 Lsun E_logL* [0.0/2.98] Upper uncertainty in logL*
55- 58 F4.2 Lsun e_logL* [0.0/2.98] Lower uncertainty in logL*
60- 66 F7.2 K Teff [2935/5623.41] Effective temperature
68- 73 F6.2 K E_Teff [0.0/241.7]? Upper uncertainty in Teff
75- 80 F6.2 K e_Teff [0.0/230.83]? Lower uncertainty in Teff
82- 86 F5.2 Msun logM* [-1.13/0.67] log stellar mass
88- 91 F4.2 Msun E_logM* [0.02/0.97] Upper uncertainty in logM*
93- 96 F4.2 Msun e_logM* [0.02/0.88] Lower uncertainty in logM*
98-103 F6.2 mJy Lmm [0.58/784.48] The mm luminosity (1)
105-109 F5.2 mJy E_Lmm [0.14/86.39] Upper uncertainty in Lmm
111-115 F5.2 mJy e_Lmm [0.14/77.52] Lower uncertainty in Lmm
--------------------------------------------------------------------------------
Note (1): For consistency, our definition of Lmm is the same as found in
Andrews+, 2018ApJ...865..157A 2018ApJ...865..157A. It is a flux density scaled to 140pc.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table10.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 17 A17 --- 2MASS 2MASS identifier
19- 19 A1 --- l_R68 Limit flag on R68
21- 24 F4.2 arcsec R68 [0.06/0.82] Radius containing 68% of the flux
26- 29 F4.2 arcsec E_R68 [0.0/0.84]? Upper uncertainty in R68
31- 34 F4.2 arcsec e_R68 [0.0/0.57]? Lower uncertainty in R68
36- 36 A1 --- l_R60 Limit flag on R60
38- 41 F4.2 arcsec R60 [0.07/1.37] Radius containing 60% of the flux
43- 46 F4.2 arcsec E_R60 [0.0/1.29]? Upper uncertainty in R60
48- 51 F4.2 arcsec e_R60 [0.0/0.7]? Lower uncertainty in R60
53- 56 F4.2 arcsec Rt [0.05/1.11] Transition radius
58- 61 F4.2 arcsec E_Rt [0.0/0.91] Upper uncertainty in Rt
63- 66 F4.2 arcsec e_Rt [0.0/0.66] Lower uncertainty in Rt
68- 72 F5.2 Jy/sr f0 [5.23/11.47] Amplitude coefficient
74- 77 F4.2 Jy/sr E_f0 [0.01/3.63] Upper uncertainty in f0
79- 82 F4.2 Jy/sr e_f0 [0.01/5.12] Lower uncertainty in f0
84- 88 F5.2 --- alpha [1.98/83.89] Transition index
90- 94 F5.2 --- E_alpha [2.74/68.11] Upper uncertainty in alpha
96-100 F5.2 --- e_alpha [0.4/53.55] Lower uncertainty in alpha
102-106 F5.2 --- beta [1.25/14.38] Outer cutoff index
108-111 F4.2 --- E_beta [0.2/9.58] Upper uncertainty in beta
113-116 F4.2 --- e_beta [0.16/7.37] Lower uncertainty in beta
118-122 F5.2 --- gamma [-6.16/0.5] Inner cutoff index
124-127 F4.2 --- E_gamma [0.01/4.88] Upper uncertainty in gamma
129-132 F4.2 --- e_gamma [0.01/4.96] Lower uncertainty in gamma
134-138 F5.2 deg i [3.67/77.72] Inclination
140-144 F5.2 deg E_i [0.6/46.25] Upper uncertainty in deg
146-150 F5.2 deg e_i [0.53/44.6] Lower uncertainty in deg
152-157 F6.2 deg PosAng [-16.22/209.14] Position angle
159-164 F6.2 deg E_PosAng [0.52/103.18] Upper uncertainty in PosAng
166-170 F5.2 deg e_PosAng [0.57/87.7] Lower uncertainty in PosAng
172-176 F5.2 arcsec dDE [-1.73/1.82] Declination offset
178-181 F4.2 arcsec E_dDE [0.0/1.9] Upper uncertainty in dDE
183-186 F4.2 arcsec e_dDE [0.0/1.88] Lower uncertainty in dDE
188-192 F5.2 arcsec dRA [-1.58/1.82] Right Ascension offset
194-197 F4.2 arcsec E_dRA [0.0/2.0] Upper uncertainty in dRA
199-202 F4.2 arcsec e_dRA [0.0/2.03] Lower uncertainty in dRA
204-208 F5.2 [-] lnwcorr [-4.47/-0.47] Natural log fitted weight
correction factor
210-213 F4.2 [-] E_lnwcorr [0.0/0.02] Upper uncertainty in lnwcorr
215-218 F4.2 [-] e_lnwcorr [0.0/0.01] Lower uncertainty in lnwcorr
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS], 22-Sep-2021