J/ApJ/898/56 UVOT, ZTF gri LCs and spectra of the SN Ia 2019yvq (Miller+, 2020)

The spectacular ultraviolet flash from the peculiar Type Ia supernova 2019yvq. Miller A.A., Magee M.R., Polin A., Maguire K., Zimmerman E., Yao Y., Sollerman J., Schulze S., Perley D.A., Kromer M., Dhawan S., Bulla M., Andreoni I., Bellm E.C., De K., Dekany R., Delacroix A., Fremling C., Gal-Yam A., Goldstein D.A., Golkhou V.Z., Goobar A., Graham M.J., Irani I., Kasliwal M.M., Kaye S., Kim Y.-L., Laher R.R., Mahabal A.A., Masci F.J., Nugent P.E., Ofek E., Phinney E.S., Prentice S.J., Riddle R., Rigault M., Rusholme B., Schweyer T., Shupe D.L., Soumagnac M.T., Terreran G., Walters R., Yan L., Zolkower J., Kulkarni S.R. <Astrophys. J., 898, 56 (2020)> =2020ApJ...898...56M 2020ApJ...898...56M
ADC_Keywords: Supernovae; Photometry, ugriz; Surveys; Photometry, ultraviolet; Spectroscopy Keywords: Surveys ; Supernovae ; Type Ia supernovae ; White dwarf stars ; Observational astronomy Abstract: Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia (Mg~-18.5mag at peak) yet featured very high absorption velocities (v∼15000km/s for SiIIλ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure M56Ni=0.31±0.05M) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [CaII] emission, if it was a double detonation, or narrow [OI] emission, if it was due to a violent merger. Description: The Zwicky Transient Facility (ZTF) simultaneously conducts multiple time-domain surveys using the ZTF camera on the the Palomar Oschin Schmidt 48 inch (P48) telescope. SN 2019yvq was first detected by ZTF on 2019 December 29.46, as part of the ZTF public survey (see Bellm+ 2019PASP..131f8003B 2019PASP..131f8003B). Continued monitoring with ZTF, and follow-up with other telescopes, confirmed a spectacular decline in the early emission from SN 2019yvq (Figure 1). The field of SN 2019yvq was additionally observed by ZTF with nearly a nightly cadence as part of the ZTF partnership Uniform Depth Survey (ZUDS; D. Goldstein et al. 2020, in preparation). Using images obtained as part of the ZUDS program, we perform forced point-spread function (PSF) photometry at the location of SN 2019yvq following the procedure described in Yao+ (2019, J/ApJ/886/152). UV observations of SN 2019yvq were obtained with the UVOT onboard the Neil Gehrels Swift Observatory. We obtained a first spectrum, ∼1.8 days after the initial ZTF detection with the SPectrograph for the Rapid Acquisition of Transients (SPRAT) on the 2m Liverpool Telescope (LT). Further spectroscopy was obtained with a variety of telescopes, including: the Spectral Energy Density machine (SEDM) on the Palomar 60 inch telescope (P60), Binospec on the 6.5m MMT telescope, the Low-Resolution Imaging Spectrometer (LRIS) on the 10m Keck I telescope, the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT), and the Double Spectrograph (DBSP) on the Palomar 200 in Hale Telescope. 25 observations have been made spanning 2019 Dec 31 to 2020 March 22 (see Table 3). Objects: ---------------------------------------------------------- RA (ICRS) DE Designation(s) ---------------------------------------------------------- 12 27 21.85 +64 47 59.8 SN 2019yvq = ZTF19adcecwu ---------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 29 435 ZTF P48 photometry of SN 2019yvq table2.dat 28 57 UVOT photometry of SN 2019yvq table3.dat 100 25 Spectroscopic observations of SN 2019yvq sp/* . 25 Individual spectrum in ASCII format -------------------------------------------------------------------------------- See also: J/MNRAS/377/1531 : Optical & IR photometry of SN 2004eo (Pastorello+, 2007) J/MNRAS/397/1177 : Swift-XRT observations of GRBs (Evans+, 2009) J/AJ/139/120 : Low-redshift Type-Ia supernovae (Folatelli+, 2010) J/MNRAS/410/585 : SN 2009dc BVRI light curves (Silverman+, 2011) J/AJ/142/156 : The CSP (DR2): photometry of SNe Ia (Stritzinger+, 2011) J/AJ/143/126 : Spectroscopy of 462 nearby Type Ia SNe (Blondin+, 2012) J/ApJ/749/18 : Swift/UVOT observations of 12 nearby SN-Ia (Brown+, 2012) J/A+A/554/A27 : 2011fe spectrophotometric time series (Pereira+, 2013) J/AJ/146/86 : Cosmicflows-2 catalog (Tully+, 2013) J/MNRAS/444/3258 : Velocities and EW of PTF SNe Ia (Maguire+, 2014) J/ApJ/836/232 : Swift-UVOT obs. analysis of 29 SNe Ia (Brown+, 2017) J/MNRAS/464/2672 : ASAS-SN bright supernova catalog 2013-2014 (Holoien+, 2017) J/AJ/154/211 : The CSP (DR3): photometry of low-z SNeIa (Krisciunas+, 2017) J/ApJ/877/152 : UV to NIR light curves of type Ia SN 2017erp (Brown+, 2019) J/ApJ/870/L1 : K2 obs. of type Ia supernova SN 2018oh (Dimitriadis+, 2019) J/ApJ/870/13 : K2 LC alternative analysis of ASASSN-18bt (Shappee+, 2019) J/ApJ/886/152 : ZTF early observations of Type Ia SNe. I. LCs (Yao+, 2019) J/ApJ/895/32 : Zwicky Transient Facility BTS. I. (Fremling+, 2020) J/A+A/634/A37 : TURTLS Light curves of 56Ni distributions (Magee+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.4 d MJD [58846.4/58999.3] Epoch, Modified Julian Date (JD-2400000.5) 12- 18 F7.2 uJy Flux [66.5/5348.1] Flux in Filt 20- 24 F5.2 uJy e_Flux [2.68/91.89] Uncertainty in Flux 26- 29 A4 --- Filt Filter (gztf, iztf or rztf) (1) -------------------------------------------------------------------------------- Note (1): Observed fluxes in the ZTF passbands, no correction for reddening has been applied. Due to poor observing conditions, SN 2019yvq is not detected in one gZTF and one iZTF image from 2020 March 09, and we therefore do not provide a flux measurement for those epochs. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.4 d MJD [58846.8/58907] Epoch, Modified Julian Date (JD-2400000.5) 12- 17 F6.2 uJy Flux [4.04/457.9] Flux in Filt 19- 23 F5.2 uJy e_Flux [2.9/30.8] Uncertainty in Flux 25- 28 A4 --- Filt Filter (uvm2, uvw1 or uvw2) (1) -------------------------------------------------------------------------------- Note (1): Host-subtracted fluxes in the UVOT passbands, no correction for reddening has been applied. Epochs with S/N<3 are shown as upper limits in Figure 1. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 "Y/M/D" Obs.date Observing date (ISO 8601); column added by CDS 12- 19 A8 "h:m:s" Obs.time Observing time (ISO 8601); column added by CDS 21- 28 F8.2 d MJD [58848.2/58930.5] Modified Julian Date 30- 34 F5.1 d Phase [-14.9/66.5] Phase relative to TB,max in the SN rest frame (1) 36- 47 A12 --- Tel Telescope/Instrument 49- 52 I4 --- R [100/4000] Resolution Δλ/λ for the central region of the spectrum 54- 63 A10 0.1nm Range Wavelength range in Å units 65- 68 F4.2 --- AirMass [1.19/1.88] Airmass 70-100 A31 --- FileName Name of the spectrum file; column added by CDS -------------------------------------------------------------------------------- Note (1): The time of B-band maximum, TB,max, is 58863.33±0.21 MJD. See Section 2.2. -------------------------------------------------------------------------------- Byte-by-byte Description of file: sp/* -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.2 0.1nm lambda [3064.5/10305.5] Wavelength in Angstrom units 10- 31 E22.6 --- Flux [-0.4/1212.5]? Relative Flux -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 17-Nov-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line