J/ApJ/902/115 EvryFlare. III. Superflares from Evryscope & TESS (Howard+, 2020)

EvryFlare. III. Temperature evolution and habitability impacts of dozens of superflares observed simultaneously by Evryscope and TESS. Howard W.S., Corbett H., Law N.M., Ratzloff J.K., Galliher N., Glazier A. L, Gonzalez R., Vasquez Soto A., Fors O., del Ser D., Haislip J. <Astrophys. J., 902, 115 (2020)> =2020ApJ...902..115H 2020ApJ...902..115H
ADC_Keywords: Stars, flare; Stars, M-type; Colors; Effective temperatures; Stars, masses; Optical Keywords: Exoplanet atmospheres ; Ultraviolet astronomy ; Astrobiology ; Stellar flares ; Optical flares Abstract: Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable-zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has usually been approximated by a 9000K blackbody. If superflares are hotter, then the UV emission may be 10 times higher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000K. Only a handful of M-dwarf superflares have been recorded with multiwavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and Transiting Exoplanet Survey Satellite observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M-dwarfs with published time-resolved blackbody evolution by ∼10x. We measure temperatures at 2 minutes cadence for 42 superflares from 27 K5-M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14000K depends on energy. We discover that 43% of the flares emit above 14000K, 23% emit above 20000K and 5% emit above 30000K. The largest and hottest flare briefly reached 42000K. Some do not reach 14000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ∼120W/m2 and up to 103W/m2, 100-1000 times the time-averaged X-ray and UV flux from Proxima Cen. Description: Evryscope-South is located at Cerro Tololo Inter-American Observatory in Chile, and Evryscope-North is located at Mount Laguna Observatory in California, USA. Each Evryscope is an all-sky array of small telescopes that continuously and simultaneously images 8150deg2 and 18400deg2 in total each night at a resolution of 13"/pixel and down to an airmass of two. Evryscope-South observes at 2 minute cadence in g'. The TESS mission is looking for transiting exoplanets across the entire sky, split into 26 sectors. TESS observes each sector continuously with four 10.5cm optical telescopes in a red (600-1000nm) bandpass for 28 days at 21"/pixel. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 121 44 Temperatures of simultaneous flares observed during TESS Cycle 1 -------------------------------------------------------------------------------- See also: I/347 : Distances to 1.33 billion stars in Gaia DR2 (Bailer-Jones+, 2018) IV/38 : TESS Input Catalog - v8.0 (TIC-8) (Stassun+, 2019) IV/39 : TESS Input Catalog version 8.2 (TIC v8.2) (Paegert+, 2021) J/AJ/132/866 : New M dwarfs in solar neighborhood (Riaz+, 2006) J/A+A/460/695 : Search for Associations Containing Young stars (Torres+, 2006) J/AJ/134/2340 : Membership of Praesepe & Coma Berenices (Kraus+, 2007) J/ApJS/207/15 : M dwarf flare spectra (Kowalski+, 2013) J/MNRAS/443/2561 : CONCH-SHELL catalog of nearby M dwarfs (Gaidos+, 2014) J/AJ/147/146 : Spectroscopy of Tuc-Hor candidate members (Kraus+, 2014) J/ApJ/788/81 : BANYAN III. RVel and rotation of low-mass stars (Malo+, 2014) J/ApJ/809/77 : Transiting Exoplanet Survey Satellite (TESS) (Sullivan+, 2015) J/A+A/600/A13 : HARPS M dwarfs magnetic activity (Astudillo-Defru+, 2017) J/ApJ/834/85 : Hα emission in nearby M dwarfs (Newton+, 2017) J/ApJ/840/87 : Young star systems observed with SALT (Riedel+, 2017) J/ApJ/856/23 : BANYAN. XI. The BANYAN Σ algorithm (Gagne+, 2018) J/A+A/615/A172 : alpha Cen A and B chemical composition (Morel, 2018) J/ApJ/867/105 : ATLAS all-sky stellar ref. cat., ATLAS-REFCAT2 (Tonry+, 2018) J/ApJ/883/88 : Short-duration flares from GALEX & Kepler (Brasseur+, 2019) J/ApJ/881/9 : EvryFlare. I. Cool stars's flares (Howard+, 2019) J/A+A/622/A133 : M45, M44 and M67 flare stars (Ilin+, 2019) J/AJ/159/60 : Flares from 1228 stars in TESS sectors 1 & 2 (Gunther+, 2020) J/ApJ/895/140 : EvryFlare. II. Param. of 122 cool flare stars (Howard+, 2020) J/ApJ/890/23 : NUV and FUV measurements of planet host stars (Loyd+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- TIC [5796048/441398770] TESS Input catalog ID 11- 26 A16 "datime" Date Observation date and time (ISO 8601, UTC) (1) 28- 32 F5.2 [10-7J] logEg' [31.2/35.1] Evryscope flare energy (erg) 34- 38 F5.2 [10-7J] logET [31.25/35] TESS flare energy (erg) 40- 43 F4.2 --- g'Amp [0.08/7.3] Evryscope amplitude in normalized flux, Ag' (ΔF/F) 45- 48 F4.2 --- TAmp [0.01/0.65] TESS amplitude in normalized flux, AT (ΔF/F 50- 53 F4.2 mag Color [0.07/6.6] Flare color between normalized-flux amplitudes (Ag'-AT) 55- 59 F5.3 mag e_Color [0.003/0.6] Uncertainty in Color 61- 65 I5 K TeffPk [2700/43200] Peak temperature, avg. temperature in FWHM 67- 70 I4 K e_TeffPk [300/3300] Uncertainty in TeffPk 72- 76 I5 K TeffTot [2600/50000] Total temperature 78- 82 I5 K e_TeffTot [200/13400]?=0 Lower uncertainty in TeffTot 84- 88 I5 K E_TeffTot [200/17100]?=0 Upper uncertainty in TeffTot 90- 93 F4.1 min tAbv [0/19.2] Time spent above 14000K 95- 99 F5.3 --- Impulse [0.003/1.3] Impulse, normalized Everyscope flux amplitude Ag' / minute (2) 101-105 F5.3 --- e_Impulse [0/0.6] Uncertainty in Impulse 107-115 F9.6 d Prot [0.11/83]? Stellar rotation period 117-121 F5.3 Msun Mass [0.13/0.7] Stellar mass ------------------------------------------------------------------------------- Note (1): UT observation identifiers are approximated from barycentric TESS epochs and may differ by up to 10min from the exact flare peak time. Note (2): The power-law fit for each flare observable Ofl versus flare impulse I is of the form log10OflIlog10I+βI. Table 2: relationships between flare temperature observables and flare energy and impulse ---------------------------------------------------------------------------- Ofl αE βE αI βI ---------------------------------------------------------------------------- Peak Teff 0.128 -0.193 0.115 4.193 Entire flare Teff 0.064 1.811 0.114 4.07 Time above 14000K 0.285 -8.969 Peak color --- --- 0.792 0.507 ---------------------------------------------------------------------------- See Section 6.3. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Howard et al. Paper I. 2019ApJ...881....9H 2019ApJ...881....9H Cat. J/ApJ/881/9 Howard et al. Paper II. 2020ApJ...895..140H 2020ApJ...895..140H Cat. J/ApJ/895/140 Howard et al. Paper III. 2020ApJ...902..115H 2020ApJ...902..115H This Catalog Howard et al. Paper IV. 2021ApJ...920...42H 2021ApJ...920...42H
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 20-Apr-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line