J/ApJ/907/22  GASP. XXXII. Diffuse Ionized Gas (DIG) properties (Tomicic+, 2021)

GASP. XXXII. Measuring the Diffuse Ionized Gas Fraction in Ram-pressure-stripped Galaxies. Tomicic N., Vulcani B., Poggianti B.M., Mingozzi M., Werle A., Bettoni D., Franchetto A., Gullieuszik M., Moretti A., Fritz J., Bellhouse C. <Astrophys. J., 907, 22 (2021)> =2021ApJ...907...22T 2021ApJ...907...22T
ADC_Keywords: Clusters, galaxy; Interstellar medium; Star Forming Region Keywords: Galaxy clusters ; Galaxy groups ; Interstellar medium Abstract: The diffuse ionized gas (DIG) is an important component of the interstellar medium, and it can be affected by many physical processes in galaxies. Measuring its distribution and contribution in emission allows us to properly study both its ionization and star formation in galaxies. Here, we measure for the first time the DIG emission in 38 gas-stripped galaxies in local clusters drawn from the GAs Stripping Phenomena in galaxies with the MUSE survey (GASP). These galaxies are at different stages of stripping. We also compare the DIG properties to those of 33 normal galaxies from the same survey. To estimate the DIG fraction (CDIG) and derive its maps, we combine the attenuation-corrected Hα surface brightness with the [SII]/Hα line ratio. Our results indicate that we cannot use either a single Hα or [SII]/Hα value, or a threshold in equivalent width of Hα emission line to separate spaxels dominated by DIG and non-DIG emission. Assuming a constant surface brightness of the DIG across galaxies underestimates CDIG. Contrasting stripped and nonstripped galaxies, we find no clear differences in CDIG. The DIG emission contributes between 20% and 90% of the total integrated flux and does not correlate with the galactic stellar mass and star formation rate (SFR). The CDIG anticorrelates with the specific SFR, which may indicate an older (>108yr) stellar population as the ionizing source of the DIG. The DIG fraction shows anticorrelations with the SFR surface density, which could be used for a robust estimation of integrated CDIG in galaxies. Description: For this work, we make use of the observations obtained in the context of the multiwavelength Gas Fraction in Ram-pressure-stripped (GASP) project. The survey targeted 114 late-type galaxies in the redshift regime 0.04<z<0.1, with galaxy stellar masses in the range 109<M*/M☉<1011.5 and located in different environments (galaxy clusters, groups, filaments, and isolated). The GASP project used integral field unit (IFU) data, observed with the MUSE instrument (Multi Unit Spectroscopic Explorer), which provide spatially resolved, spectroscopic information on galaxies. A detailed description of the GASP observations and data reduction can be found in Poggianti+, 2017ApJ...844...48P 2017ApJ...844...48P. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 61 33 Galaxies from the control sample table2.dat 54 38 Stripped galaxies -------------------------------------------------------------------------------- See also: J/ApJ/661/801 : Survey for ionization neutral gas galaxies. III. (Oey+, 2007) J/ApJ/704/842 : VIRUS-P spectroscopy of NGC 5194 (Blanc+, 2009) J/MNRAS/416/727 : Padova-Millennium Galaxy and Group Catalogue (Calvi+, 2011) J/ApJS/208/10 : Effects of κ-distribution in HII regions (Dopita+, 2013) J/A+A/581/A41 : OmegaWINGS BV photometry galaxy clusters (Gullieuszik+, 2015) J/A+A/640/A22 : Jellyfish galaxy JO201 JVLA datacube (Ramatsoku+, 2020) J/ApJ/895/106 : GAs Stripping Phenomena galaxies with MUSE (Franchetto+, 2020) J/ApJ/899/13 : GASP. XXI. Star forming rate 54 galaxies (Gullieuszik+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 A13 --- ID Identifier 15- 20 F6.4 Msun/yr/kpc2 Ssfr [0.001/0.02] star-formation rate surface density 22- 25 F4.2 --- beta [0.39/1] The β value; equation 6 (1) 27- 30 F4.2 --- e_beta [0.01/0.2] The 3σ uncertainty in beta 32- 36 F5.2 [10-7W/kpc2] logf0 [37.8/38.6] log f0 value; equation 6 (1) 38- 41 F4.2 [10-7W/kpc2] e_logf0 [0.01/0.1] The 3σ uncertainty in logf0 43- 46 F4.2 --- CDIG [0.22/0.9] Diffuse disk ionized gas fraction 48- 51 F4.2 --- e_CDIG [0.03/0.14] 3σ uncertainty in CDIG (2) 53- 56 F4.2 --- Area [0.57/0.98] Spatial fractions of spaxels that have CDIG>0.3 within disk 58- 61 F4.2 --- e_Area [0/0.03] 3σ uncertainty in Area (3) -------------------------------------------------------------------------------- Note (1): Equation 6 as presented in the paper (section 3.1): CDIG=(f0/ΣHα,corr)β Note (2): Estimated as a mean of spaxel-by-spaxel CDIG uncertainties. Note (3): Calculated assuming a bimodal distribution. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- ID Identifier 8- 13 F6.4 Msun/yr/kpc2 Ssfr [0.002/0.2151] star-formation rate surface density 15- 18 F4.2 --- beta [0.3/0.96] The β value; equation 6 (1) 20- 23 F4.2 --- e_beta [0.01/0.3] 3σ uncertainty in beta 25- 29 F5.2 [10-7W/kpc2] logf0 [37.8/39.1] log f0 value; equation 6 (1) 31- 34 F4.2 [10-7W/kpc2] e_logf0 [0.02/0.3] 3σ uncertainty in logf0 36- 39 F4.2 --- CDIG [0.13/0.9] Diffuse disk ionized gas fraction 41- 44 F4.2 --- e_CDIG [0.03/0.1] 3σ uncertainty in CDIG (2) 46- 49 F4.2 --- Area [0.53/1] Spatial fractions of spaxels that have CDIG>0.3 within disk 51- 54 F4.2 --- e_Area [0/0.04] 3σ uncertainty in Area (3) -------------------------------------------------------------------------------- Note (1): Equation 6 as presented in the paper (section 3.1): CDIG=(f0/ΣHα,corr)β Note (2): Estimated as a mean of spaxel-by-spaxel CDIG uncertainties. Note (3): Calculated assuming a bimodal distribution. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Poggianti et al. Paper I : 2017ApJ...844...48P 2017ApJ...844...48P Bellhouse et al. Paper II : 2017ApJ...844...49B 2017ApJ...844...49B Fritz et al. Paper III : 2017ApJ...848..132F 2017ApJ...848..132F Gullieuszik et al. Paper IV : 2017ApJ...846...27G 2017ApJ...846...27G Moretti et al. Paper V : 2018MNRAS.475.4055M 2018MNRAS.475.4055M Vulcani et al. Paper VII : 2018ApJ...852...94V 2018ApJ...852...94V Vulcani et al. Paper VIII : 2017ApJ...850..163V 2017ApJ...850..163V Jaffe et al. Paper IX : 2018MNRAS.476.4753J 2018MNRAS.476.4753J Moretti et al. Paper X : 2018MNRAS.480.2508M 2018MNRAS.480.2508M Vulcani et al. Paper XII : 2018MNRAS.480.3152V 2018MNRAS.480.3152V Poggianti et al. Paper XIII : 2019MNRAS.482.4466P 2019MNRAS.482.4466P Bellhouse et al. Paper XV : 2019MNRAS.485.1157B 2019MNRAS.485.1157B Vulcani et al. Paper XVI : 2019MNRAS.487.2278V 2019MNRAS.487.2278V Ramatsoku et al. Paper XVII : 2019MNRAS.487.4580R 2019MNRAS.487.4580R George et al. Paper XVIII : 2019MNRAS.487.3102G 2019MNRAS.487.3102G Radovich et al. Paper XIX : 2019MNRAS.486..486R 2019MNRAS.486..486R Vulcani et al. Paper XX : 2019MNRAS.488.1597V 2019MNRAS.488.1597V Gullieuszik et al. Paper XXI : 2020ApJ...899...13G 2020ApJ...899...13G Cat. J/ApJ/899/13 Moretti et al. Paper XXII : 2020ApJ...889....9M 2020ApJ...889....9M Poggianti et al. Paper XXIII : 2019ApJ...887..155P 2019ApJ...887..155P Vulcani et al. Paper XXIV : 2020ApJ...892..146V 2020ApJ...892..146V Deb et al. Paper XXV : 2020MNRAS.494.5029D 2020MNRAS.494.5029D Ramatsoku et al. Paper XXVI : 2020A&A...640A..22R 2020A&A...640A..22R Cat. J/A+A/640/A22 Franchetto et al. Paper XXVII : 2020ApJ...895..106F 2020ApJ...895..106F Cat. J/ApJ/895/106 Bellhouse et al. Paper XXIX : 2021MNRAS.500.1285B 2021MNRAS.500.1285B Vulcani et al. Paper XXX : 2020ApJ...899...98V 2020ApJ...899...98V Tomicic et al. Paper XXXII : 2021ApJ...907...22T 2021ApJ...907...22T Vulcani et al. Paper XXXIII : 2021ApJ...914...27V 2021ApJ...914...27V Campitiello et al. Paper XXXIV : 2021ApJ...911..144C 2021ApJ...911..144C Tomicic et al. Paper XXXV : 2021ApJ...922..131T 2021ApJ...922..131T Luber et al. Paper XXXVII : 2022ApJ...927...39L 2022ApJ...927...39L Ignesti et al. Paper XXXVIII : 2022ApJ...924...64I 2022ApJ...924...64I
(End) Prepared by [AAS], Coralie Fix [CDS], 31-May-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line