J/ApJ/907/22 GASP. XXXII. Diffuse Ionized Gas (DIG) properties (Tomicic+, 2021)
GASP. XXXII.
Measuring the Diffuse Ionized Gas Fraction in Ram-pressure-stripped Galaxies.
Tomicic N., Vulcani B., Poggianti B.M., Mingozzi M., Werle A., Bettoni D.,
Franchetto A., Gullieuszik M., Moretti A., Fritz J., Bellhouse C.
<Astrophys. J., 907, 22 (2021)>
=2021ApJ...907...22T 2021ApJ...907...22T
ADC_Keywords: Clusters, galaxy; Interstellar medium; Star Forming Region
Keywords: Galaxy clusters ; Galaxy groups ; Interstellar medium
Abstract:
The diffuse ionized gas (DIG) is an important component of the
interstellar medium, and it can be affected by many physical processes
in galaxies. Measuring its distribution and contribution in emission
allows us to properly study both its ionization and star formation in
galaxies. Here, we measure for the first time the DIG emission in 38
gas-stripped galaxies in local clusters drawn from the GAs Stripping
Phenomena in galaxies with the MUSE survey (GASP). These galaxies are
at different stages of stripping. We also compare the DIG properties
to those of 33 normal galaxies from the same survey. To estimate the
DIG fraction (CDIG) and derive its maps, we combine the
attenuation-corrected Hα surface brightness with the
[SII]/Hα line ratio. Our results indicate that we cannot use
either a single Hα or [SII]/Hα value, or a threshold in
equivalent width of Hα emission line to separate spaxels
dominated by DIG and non-DIG emission. Assuming a constant surface
brightness of the DIG across galaxies underestimates CDIG. Contrasting
stripped and nonstripped galaxies, we find no clear differences in
CDIG. The DIG emission contributes between 20% and 90% of the total
integrated flux and does not correlate with the galactic stellar mass
and star formation rate (SFR). The CDIG anticorrelates with the
specific SFR, which may indicate an older (>108yr) stellar population
as the ionizing source of the DIG. The DIG fraction shows
anticorrelations with the SFR surface density, which could be used for
a robust estimation of integrated CDIG in galaxies.
Description:
For this work, we make use of the observations obtained in the context
of the multiwavelength Gas Fraction in Ram-pressure-stripped (GASP)
project. The survey targeted 114 late-type galaxies in the redshift
regime 0.04<z<0.1, with galaxy stellar masses in the range
109<M*/M☉<1011.5 and located in different environments (galaxy
clusters, groups, filaments, and isolated).
The GASP project used integral field unit (IFU) data, observed with
the MUSE instrument (Multi Unit Spectroscopic Explorer), which provide
spatially resolved, spectroscopic information on galaxies. A detailed
description of the GASP observations and data reduction can be found
in Poggianti+, 2017ApJ...844...48P 2017ApJ...844...48P.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 61 33 Galaxies from the control sample
table2.dat 54 38 Stripped galaxies
--------------------------------------------------------------------------------
See also:
J/ApJ/661/801 : Survey for ionization neutral gas galaxies. III. (Oey+, 2007)
J/ApJ/704/842 : VIRUS-P spectroscopy of NGC 5194 (Blanc+, 2009)
J/MNRAS/416/727 : Padova-Millennium Galaxy and Group Catalogue (Calvi+, 2011)
J/ApJS/208/10 : Effects of κ-distribution in HII regions (Dopita+, 2013)
J/A+A/581/A41 : OmegaWINGS BV photometry galaxy clusters (Gullieuszik+, 2015)
J/A+A/640/A22 : Jellyfish galaxy JO201 JVLA datacube (Ramatsoku+, 2020)
J/ApJ/895/106 : GAs Stripping Phenomena galaxies with MUSE (Franchetto+, 2020)
J/ApJ/899/13 : GASP. XXI. Star forming rate 54 galaxies (Gullieuszik+, 2020)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- ID Identifier
15- 20 F6.4 Msun/yr/kpc2 Ssfr [0.001/0.02] star-formation rate surface
density
22- 25 F4.2 --- beta [0.39/1] The β value; equation 6 (1)
27- 30 F4.2 --- e_beta [0.01/0.2] The 3σ uncertainty in beta
32- 36 F5.2 [10-7W/kpc2] logf0 [37.8/38.6] log f0 value; equation 6 (1)
38- 41 F4.2 [10-7W/kpc2] e_logf0 [0.01/0.1] The 3σ uncertainty in logf0
43- 46 F4.2 --- CDIG [0.22/0.9] Diffuse disk ionized gas fraction
48- 51 F4.2 --- e_CDIG [0.03/0.14] 3σ uncertainty in CDIG (2)
53- 56 F4.2 --- Area [0.57/0.98] Spatial fractions of spaxels
that have CDIG>0.3 within disk
58- 61 F4.2 --- e_Area [0/0.03] 3σ uncertainty in Area (3)
--------------------------------------------------------------------------------
Note (1): Equation 6 as presented in the paper (section 3.1):
CDIG=(f0/ΣHα,corr)β
Note (2): Estimated as a mean of spaxel-by-spaxel CDIG uncertainties.
Note (3): Calculated assuming a bimodal distribution.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- ID Identifier
8- 13 F6.4 Msun/yr/kpc2 Ssfr [0.002/0.2151] star-formation rate surface
density
15- 18 F4.2 --- beta [0.3/0.96] The β value; equation 6 (1)
20- 23 F4.2 --- e_beta [0.01/0.3] 3σ uncertainty in beta
25- 29 F5.2 [10-7W/kpc2] logf0 [37.8/39.1] log f0 value; equation 6 (1)
31- 34 F4.2 [10-7W/kpc2] e_logf0 [0.02/0.3] 3σ uncertainty in logf0
36- 39 F4.2 --- CDIG [0.13/0.9] Diffuse disk ionized gas fraction
41- 44 F4.2 --- e_CDIG [0.03/0.1] 3σ uncertainty in CDIG (2)
46- 49 F4.2 --- Area [0.53/1] Spatial fractions of spaxels that
have CDIG>0.3 within disk
51- 54 F4.2 --- e_Area [0/0.04] 3σ uncertainty in Area (3)
--------------------------------------------------------------------------------
Note (1): Equation 6 as presented in the paper (section 3.1):
CDIG=(f0/ΣHα,corr)β
Note (2): Estimated as a mean of spaxel-by-spaxel CDIG uncertainties.
Note (3): Calculated assuming a bimodal distribution.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Poggianti et al. Paper I : 2017ApJ...844...48P 2017ApJ...844...48P
Bellhouse et al. Paper II : 2017ApJ...844...49B 2017ApJ...844...49B
Fritz et al. Paper III : 2017ApJ...848..132F 2017ApJ...848..132F
Gullieuszik et al. Paper IV : 2017ApJ...846...27G 2017ApJ...846...27G
Moretti et al. Paper V : 2018MNRAS.475.4055M 2018MNRAS.475.4055M
Vulcani et al. Paper VII : 2018ApJ...852...94V 2018ApJ...852...94V
Vulcani et al. Paper VIII : 2017ApJ...850..163V 2017ApJ...850..163V
Jaffe et al. Paper IX : 2018MNRAS.476.4753J 2018MNRAS.476.4753J
Moretti et al. Paper X : 2018MNRAS.480.2508M 2018MNRAS.480.2508M
Vulcani et al. Paper XII : 2018MNRAS.480.3152V 2018MNRAS.480.3152V
Poggianti et al. Paper XIII : 2019MNRAS.482.4466P 2019MNRAS.482.4466P
Bellhouse et al. Paper XV : 2019MNRAS.485.1157B 2019MNRAS.485.1157B
Vulcani et al. Paper XVI : 2019MNRAS.487.2278V 2019MNRAS.487.2278V
Ramatsoku et al. Paper XVII : 2019MNRAS.487.4580R 2019MNRAS.487.4580R
George et al. Paper XVIII : 2019MNRAS.487.3102G 2019MNRAS.487.3102G
Radovich et al. Paper XIX : 2019MNRAS.486..486R 2019MNRAS.486..486R
Vulcani et al. Paper XX : 2019MNRAS.488.1597V 2019MNRAS.488.1597V
Gullieuszik et al. Paper XXI : 2020ApJ...899...13G 2020ApJ...899...13G Cat. J/ApJ/899/13
Moretti et al. Paper XXII : 2020ApJ...889....9M 2020ApJ...889....9M
Poggianti et al. Paper XXIII : 2019ApJ...887..155P 2019ApJ...887..155P
Vulcani et al. Paper XXIV : 2020ApJ...892..146V 2020ApJ...892..146V
Deb et al. Paper XXV : 2020MNRAS.494.5029D 2020MNRAS.494.5029D
Ramatsoku et al. Paper XXVI : 2020A&A...640A..22R 2020A&A...640A..22R Cat. J/A+A/640/A22
Franchetto et al. Paper XXVII : 2020ApJ...895..106F 2020ApJ...895..106F Cat. J/ApJ/895/106
Bellhouse et al. Paper XXIX : 2021MNRAS.500.1285B 2021MNRAS.500.1285B
Vulcani et al. Paper XXX : 2020ApJ...899...98V 2020ApJ...899...98V
Tomicic et al. Paper XXXII : 2021ApJ...907...22T 2021ApJ...907...22T
Vulcani et al. Paper XXXIII : 2021ApJ...914...27V 2021ApJ...914...27V
Campitiello et al. Paper XXXIV : 2021ApJ...911..144C 2021ApJ...911..144C
Tomicic et al. Paper XXXV : 2021ApJ...922..131T 2021ApJ...922..131T
Luber et al. Paper XXXVII : 2022ApJ...927...39L 2022ApJ...927...39L
Ignesti et al. Paper XXXVIII : 2022ApJ...924...64I 2022ApJ...924...64I
(End) Prepared by [AAS], Coralie Fix [CDS], 31-May-2022