J/ApJ/919/138 Rot. vel. & per. of hot Jupiter host stars (Tejada Arevalo+, 2021)
Further evidence for tidal spin-up of hot Jupiter host stars.
Tejada Arevalo R.A., Winn J.N., Anderson K.R.
<Astrophys. J., 919, 138 (2021)>
=2021ApJ...919..138T 2021ApJ...919..138T
ADC_Keywords: Stars, giant; Exoplanets; Rotational velocities; Stars, ages;
Stars, masses; Stars, diameters; Abundances; Optical
Keywords: Tidal interaction ; Stellar rotation ; Hot Jupiters ;
Dynamical evolution ; Stellar ages ; Extrasolar gaseous giant planets
Abstract:
For most hot Jupiters around main-sequence Sun-like stars, tidal
torques are expected to transfer angular momentum from the planet's
orbit to the star's rotation. The timescale for this process is
difficult to calculate, leading to uncertainties in the history of
orbital evolution of hot Jupiters. We present evidence for tidal
spin-up by taking advantage of recent advances in planet detection and
host-star characterization. We compared the projected rotation
velocities and rotation periods of Sun-like stars with hot Jupiters
and spectroscopically similar stars with (i) giant planets on wider
orbits and (ii) lower-mass planets. The hot-Jupiter hosts tend to spin
faster than the stars in either of the control samples. Reinforcing
earlier studies, the results imply that hot Jupiters alter the spins
of their host stars while they are on the main sequence, and that the
ages of hot-Jupiter hosts cannot be reliably determined using
gyrochronology.
Description:
We constructed a sample of giant-planet host stars and began by
merging the spectroscopic parameters of the relatively homogeneous
SWEET-Cat catalog (Santos+ 2013, J/A+A/556/A150) with the more
comprehensive database of the NASA Exoplanet Archive (NEA;
http://exoplanetarchive.ipac.caltech.edu/) as of 2021 March.
See Section 2.1.
We also constructed a sample of stars with lower-mass planets for
which tides are expected to be negligible. We relied on the results of
the California Kepler Survey (CKS; Petigura+ 2017, J/AJ/154/107).
See Section 2.2.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 133 523 System samples
--------------------------------------------------------------------------------
See also:
I/345 : Gaia DR2 (Gaia Collaboration, 2018)
J/ApJ/622/1102 : The planet-metallicity correlation. (Fischer+, 2005)
J/ApJ/692/L9 : Tidal evolution of transiting exoplanets (Levrard+, 2009)
J/MNRAS/413/2218 : Stellar rotation in Hyades and Praesepe (Delorme+, 2011)
J/ApJ/757/18 : RVels for 16 hot Jupiter host stars (Albrecht+, 2012)
J/A+A/556/A150 : SWEETCat I. Stellar param. for host stars (Santos+, 2013)
J/A+A/552/A120 : WASP-71b light curve (Smith+, 2013)
J/ApJS/211/24 : Rotation periods of Kepler MS stars (McQuillan+, 2014)
J/A+A/574/A39 : Exoplaneraty systems fundamental parameters (Damiani+, 2015)
J/ApJ/801/3 : Rotation periods for Q3-Q14 KOIs (Mazeh+, 2015)
J/AJ/151/89 : Spectroscopy and photometry of HATS-17 (Brahm+, 2016)
J/A+A/588/L6 : WASP-12 transit light curves (Maciejewski+ 2016)
J/ApJ/825/19 : Mass-radius relationship for planets, Rp<4 (Wolfgang+, 2016)
J/MNRAS/465/3693 : 7 WASP-South transiting exoplanets (Hellier+, 2017)
J/AJ/154/107 : California-Kepler Survey (CKS). I. (Petigura+, 2017)
J/AJ/155/165 : Dissipation in exoplanet hosts (Penev+, 2018)
J/AJ/155/89 : California-Kepler Survey. IV. Planets (Petigura+, 2018)
J/AJ/158/190 : MS hot Jupiter hosts with good astrometry (Hamer+, 2019)
J/ApJS/250/20 : Rot. periods in TESS objects of interest (Canto+, 2020)
J/ApJ/888/L5 : Transits, occultation times and RVs of WASP-12b (Yee+, 2020)
J/AJ/161/68 : Obliquities of 150 hot Kepler hosting stars (Louden+, 2021)
http://exoplanetarchive.ipac.caltech.edu/ : NASA Exoplanet Archive home page
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- ID System identifier
13- 17 F5.2 km/s vsini1 [0.08/10.44] Rotation velocity, case 1,
assuming transiting CJs have sini=1
19- 23 F5.2 km/s vsini2 [0.08/10.44] Rotation velocity, case 2,
assuming the CJ hosts are randomly oriented
(=π/4)
25- 28 F4.2 km/s e_vsini [1/2] Uncertainty in both case vsini value
30- 35 F6.2 d Prot [2.75/153.55]? Rotation period
37- 41 F5.2 d e_Prot [0/50.24]? Uncertainty in rotation period
43- 48 F6.1 K Teff [5500/6000] Effective temperature
50- 54 F5.1 K e_Teff [12/208] Uncertainty in Teff
56- 60 F5.2 [Sun] Z [-0.3/0.44] Metallicity
62- 65 F4.2 [Sun] e_Z [0.01/0.2] Uncertainty in Z
67- 70 F4.2 [cm/s2] logg [3.9/4.74] log surface gravity
72- 75 F4.2 [cm/s2] e_logg [0.01/0.3] Uncertainty in logg
77- 81 F5.2 Gyr Age [0.69/12.13] Age
83- 86 F4.2 Gyr E_Age [0.13/4.51] Upper uncertainty in Age
88- 91 F4.2 Gyr e_Age [0.16/5.22] Lower uncertainty in Age
93- 96 F4.2 Rsun Rad [0.84/2.31] Radius
98-101 F4.2 Rsun E_Rad [0.01/0.25] Upper uncertainty in Rad
103-106 F4.2 Rsun e_Rad [0.01/0.23] Lower uncertainty in Rad
108-111 F4.2 Msun Mass [0.85/1.42] Mass
113-116 F4.2 Msun E_Mass [0.01/0.13] Upper uncertainty in Mass
118-121 F4.2 Msun e_Mass [0.02/0.12] Lower uncertainty in Mass
123-127 F5.2 [-] logeta [6.8/16.45] log η (1)
129-133 F5.2 [-] logtau [-1.76/15.05] log τ (2)
--------------------------------------------------------------------------------
Note (1): η is a dimensionless factor as in Equation 3:
η=(M/m)2(a/R)3
With M and m, the masses of the star and planet;
a, the orbital radius (assuming a circular orbit);
and R, the stellar radius.
Note (2): τ is the ratio of the expected spin-up time and the main-sequence
age as in Equation 4: τ=tspin-up/age. See Section 2.4.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 03-Feb-2023