J/ApJ/925/218   Nature of PAH in PG quasars from Spitzer/IRS sp.   (Xie+, 2022)

The ionization and destruction of polycyclic aromatic hydrocarbons in powerful quasars. Xie Y., Ho L.C. <Astrophys. J., 925, 218 (2022)> =2022ApJ...925..218X 2022ApJ...925..218X
ADC_Keywords: QSOs; Spectra, infrared; Redshifts; Interstellar medium; Active gal. nuclei Keywords: Interstellar medium ; Star formation ; Infrared astronomy ; AGN host galaxies Abstract: We reanalyze the mid-infrared (5-40µm) Spitzer spectra of 86 low-redshift (z<0.5) Palomar-Green quasars to investigate the nature of polycyclic aromatic hydrocarbon (PAH) emission and its utility as a star formation rate (SFR) indicator for the host galaxies of luminous active galactic nuclei (AGNs). We decompose the spectra with our recently developed template-fitting technique to measure PAH fluxes and upper limits, which we interpret using mock spectra that simulate the effects of AGN dilution. While luminous quasars can severely dilute and affect the detectability of emission lines, PAHs are intrinsically weak in some sources that are otherwise gas-rich and vigorously forming stars, conclusively demonstrating that powerful AGNs destroy PAH molecules. Comparing PAH-based SFRs with independent SFRs derived from the mid-infrared fine-structure neon lines and the total infrared luminosity reveals that PAHs can trace star formation activity in quasars with bolometric luminosities ≤1046erg/s, but increasingly underestimate the SFR for more powerful quasars, typically by ∼0.5dex. Relative to star-forming galaxies and low-luminosity AGNs, quasars have a comparable PAH 11.3µm/7.7µm ratio but characteristically lower ratios of 6.2µm/7.7µm, 8.6µm/7.7µm, and 11.3µm/17.0µm. We suggest that these trends indicate that powerful AGNs preferentially destroy small grains and enhance the PAH ionization fraction. Description: We study the 87 low-redshift (z<0.5) optical/UV-selected quasars from the Palomar-Green (PG) survey (Schmidt & Green 1983, J/ApJ/269/352), as summarized in Boroson & Green (1992ApJS...80..109B 1992ApJS...80..109B). Our final sample contains 86 quasars with low-resolution spectra from the Spitzer Infrared Spectrograph (IRS) acquired by Shi+ (2014, J/ApJS/214/23). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 218 86 Physical properties and measurements of PG quasars -------------------------------------------------------------------------------- See also: VII/157 : The Extended 12um galaxy sample (Rush+ 1993) J/ApJ/269/352 : Quasar evolution (Schmidt+, 1983) J/A+A/357/839 : AGN 2.5-11um spectroscopy (Clavel+, 2000) J/ApJ/653/127 : 9.7um silicate features in AGNs (Shi+, 2006) J/ApJ/656/770 : Mid-IR spectrum of star-forming galaxies (Smith+, 2007) J/ApJ/705/885 : PAH in galaxies at z∼0.1 (O'Dowd+, 2009) J/ApJ/719/1191 : Mid-IR indicators of SF and AGN in galaxies (Treyer+, 2010) J/ApJ/723/895 : IR luminosities and aromatic features of 5MUSES (Wu+, 2010) J/ApJ/758/1 : SDSS-Spitzer AGN properties (LaMassa+, 2012) J/ApJS/214/23 : IR spectra and photometry of z<0.5 quasars (Shi+, 2014) J/ApJ/790/124 : Dust and gas physics of the GOALS sample (Stierwalt+, 2014) J/A+A/578/A74 : Nuclear obscuration in LINERs (Gonzalez-Martin+, 2015) J/ApJS/219/18 : LIRAS: LoCuSS IR AGN survey (Xu+, 2015) J/ApJ/819/L27 : Stellar masses of optical & IR QSO hosts (Zhang+, 2016) J/MNRAS/470/3071 : PAH features of AGN (Jensen+, 2017) J/ApJ/854/158 : z<0.5 PG quasars IR energy distributions (Shangguan+, 2018) J/ApJ/884/136 : PAH features of star-forming gal. using Spitzer (Xie+, 2019) J/ApJ/905/55 : Bright-PAH gal. from AKARI & Spitzer (ASESS) (Lai+, 2020) J/ApJ/910/124 : Star formation rates of low-z QSOs from 1-500um (Xie+, 2021) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- --- [PG] 4- 11 A8 --- PG QSO name (HHMM+DDd; B1950) 13- 17 F5.3 --- zsp [0.025/0.472] Spectroscopic redshift 19- 22 I4 Mpc Dist [113/2723] Luminosity distance 24- 27 F4.2 [Msun] logMBH [6.62/9.9] Log of black hole mass (1) 29- 33 F5.2 [10-7W] logLbol [44.6/47.2] Log of AGN bolometric luminosity, in erg/s (1) 35- 39 F5.2 [Msun] logMs [9.7/12.1] Stellar mass of the quasar host galaxy 41 A1 --- l_logMs [* ] Flag on source of logMs (2) 43- 47 F5.1 --- fAGN [1/110]? AGN fraction 50 A1 --- l_logLPAH6 Limit flag on logLPAH6 52- 56 F5.2 [10-7W] logLPAH6 [39.3/43.33]? PAH luminosity at 6.2 um 58- 61 F4.2 [10-7W] e_logLPAH6 [0.02/0.14]? Lower uncertainty on logLPAH6 63- 66 F4.2 [10-7W] E_logLPAH6 [0.02/0.14]? Upper uncertainty on logLPAH6 68 A1 --- l_logLPAH7 Limit flag on logLPAH7 70- 74 F5.2 [10-7W] logLPAH7 [41.38/44] PAH luminosity at 7.7 um 76- 79 F4.2 [10-7W] e_logLPAH7 [0.01/0.14]? Lower uncertainty on logLPAH7 81- 84 F4.2 [10-7W] E_logLPAH7 [0.01/0.14]? Upper uncertainty on logLPAH7 86 A1 --- l_logLPAH8 Limit flag on logLPAH8 88- 92 F5.2 [10-7W] logLPAH8 [40.23/43.65] PAH luminosity at 8.6 um 94- 97 F4.2 [10-7W] e_logLPAH8 [0.05/0.14]? Lower uncertainty on logLPAH8 99- 102 F4.2 [10-7W] E_logLPAH8 [0.05/0.14]? Upper uncertainty on logLPAH8 104 A1 --- l_logLPAH11 Limit flag on logLPAH11 106- 110 F5.2 [10-7W] logLPAH11 [40.98/43.77] PAH luminosity at 11.3 um 112- 115 F4.2 [10-7W] e_logLPAH11 [0.03/0.14]? Lower uncertainty on logLPAH11 117- 120 F4.2 [10-7W] E_logLPAH11 [0.03/0.14]? Upper uncertainty on logLPAH11 122 A1 --- l_logLPAH17 Limit flag on logLPAH17 124- 128 F5.2 [10-7W] logLPAH17 [40.9/44] PAH luminosity at 17.0 um 130- 133 F4.2 [10-7W] e_logLPAH17 [0.02/0.14]? Lower uncertainty on logLPAH17 135- 138 F4.2 [10-7W] E_logLPAH17 [0.02/0.14]? Upper uncertainty on logLPAH17 140 A1 --- l_logLPAHt Limit flag on logLPAHt 142- 146 F5.2 [10-7W] logLPAHt [41.8/44.4] PAH luminosity within 5-15um 148- 151 F4.2 [10-7W] e_logLPAHt [0.01/0.14]? Lower uncertainty on logLPAHt 153- 156 F4.2 [10-7W] E_logLPAHt [0.01/0.14]? Upper uncertainty on logLPAHt 158 A1 --- l_logSFRPAH Limit flag on logSFRPAH 160- 164 F5.2 [Msun/yr] logSFRPAH [-0.5/2.1] Log, SFR derived from the PAH luminosity within 5-15um 166- 169 F4.2 [Msun/yr] e_logSFRPAH [0.03/0.2]? Lower uncertainty on logSFRPAH 171- 174 F4.2 [Msun/yr] E_logSFRPAH [0.03/0.2]? Upper uncertainty on logSFRPAH 176- 180 F5.2 [Msun/yr] b_logSFRNe [-0.13/1.25]? Lower bound on logSFRNe 182- 185 F4.2 [Msun/yr] B_logSFRNe [0.47/1.51]? Upper bound on logSFRNe 187- 190 F4.2 [Msun/yr] logSFRNe [0.19/2.4]? Log, SFR derived from the neon line luminosity 192- 195 F4.2 [Msun/yr] e_logSFRNe [0.14/0.81]? Lower uncertainty on logSFRNe 197- 200 F4.2 [Msun/yr] E_logSFRNe [0.14/0.81]? Upper uncertainty on logSFRNe 202 A1 --- l_logSFRIR Limit flag on logSFRIR 204- 208 F5.2 [Msun/yr] logSFRIR [-0.7/2.5] Log, SFR derived from the total IR luminosity 210- 213 F4.2 [Msun/yr] e_logSFRIR [0.01/0.16]? Lower uncertainty on logSFRIR 215- 218 F4.2 [Msun/yr] E_logSFRIR [0.01/0.2]? Upper uncertainty on logSFRIR -------------------------------------------------------------------------------- Note (1): From Shangguan et al. (2018, J/ApJ/854/158) Note (2): Stellar mass of the quasar host galaxy from Zhang+ (2016, J/ApJ/819/L27) or (*) derived from the MBH-Ms relation of Greene+ (2020ARA&A..58..257G 2020ARA&A..58..257G) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 11-Sep-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line