J/ApJ/941/106 X-SHOOTER/ALMA QSOs at 5.7≲z≲7.6. II. BH masses (Farina+, 2022)
The X-shooter/ALMA sample of quasars in the epoch of reionization.
II. Black hole masses, Eddington ratios, and the formation of the first quasars.
Farina E.P., Schindler J.-T., Walter F., Banados E., Davies F.B.,
Decarli R., Eilers A.-C., Fan X., Hennawi J.F., Mazzucchelli C.,
Meyer R.A., Trakhtenbrot B., Volonteri M., Wang F., Worseck G., Yang J.,
Gutcke T.A., Venemans B.P., Bosman S.E.I., Costa T., De Rosa G.,
Drake A.B., Onoue M.
<Astrophys. J., 941, 106 (2022)>
=2022ApJ...941..106F 2022ApJ...941..106F
ADC_Keywords: QSOs ; Black holes ; Redshifts ; Magnitudes, absolute ;
Spectra, infrared ; Millimetric/submm sources
Keywords: Quasars ; Reionization ; Supermassive black holes
Abstract:
We present measurements of black hole masses and Eddington ratios
(λEdd) for a sample of 38 bright (M1450←24.4mag) quasars
at 5.8≲z≲7.5, derived from Very Large Telescope/X-shooter near-IR
spectroscopy of their broad CIV and MgII emission lines. The black
hole masses (on average, MBH∼4.6x109M☉) and accretion rates
(0.1≲λEdd≲1.0) are broadly consistent with that of
similarly luminous 0.3≲z≲2.3 quasars, but there is evidence for a
mild increase in the Eddington ratio above z≳6. Combined with deep
Atacama Large Millimeter/submillimeter Array (ALMA) observations of
the [CII]158um line from the host galaxies and VLT/MUSE investigations
of the extended Lyα halos, this study provides fundamental clues
to models of the formation and growth of the first massive galaxies
and black holes. Compared to local scaling relations, z≳5.7 black
holes appear to be over-massive relative to their hosts, with
accretion properties that do not change with host galaxy morphologies.
Assuming that the kinematics of the T∼104K gas, traced by the
extended Lyα halos, are dominated by the gravitational potential
of the dark matter halo, we observe a similar relation between black
hole mass and circular velocity as reported for z∼0 galaxies. These
results paint a picture where the first supermassive black holes
reside in massive halos at z≳6 and lead the first stages of galaxy
formation by rapidly growing in mass with a duty cycle of order unity.
The duty cycle needs to drastically drop toward lower redshifts, while
the host galaxies continue forming stars at a rate of hundreds of
solar masses per year, sustained by the large reservoirs of cool gas
surrounding them.
Description:
Near-IR spectra of the quasars in our sample were collected with the
medium-resolution spectrograph X-shooter currently mounted on the
Cassegrain focus of the ESO/VLT Telescope Melipal. Observations were
taken with the 0.6", 0.9" or 1.2" slit, delivering a resolution
R=λ/{DELTA}λ∼8100-4300 in the near-IR, and following
the typical ABBA or ABAB dither pattern. Exposure times range from
40min to 22.3hr per target, with a median of 2hr.
To investigate the link between supermassive black holes and their
hosts at z≳6, we started a VLT/X-shooter program targeting quasars
already observed with ALMA.
See Paper I; Schindler+ 2020, J/ApJ/905/51 for more details.
Throughout this paper, we assume a concordance cosmology with
H0=70km/s/Mpc, ΩM=0.3, and ΩΛ=1-ΩM=0.7.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 138 38 Properties of the quasars observed with X-shooter
table5.dat 138 114 List of z≳5.7 quasars from the literature with
MgII based black hole masses
--------------------------------------------------------------------------------
See also:
VII/286 : SDSS quasar cat., fourteenth data release (Paris+, 2018)
J/ApJ/613/682 : AGN masses and broad-line region sizes (Peterson+, 2004)
J/ApJS/166/470 : SDSS-Spitzer type I QSOs IR photometry (Richards+, 2006)
J/AJ/131/2766 : QSO luminosity function from SDSS-DR3 (Richards+, 2006)
J/AJ/133/2222 : Clustering of high-redshift QSOs from SDSS (Shen+, 2007)
J/MNRAS/386/1605 : Luminous K-band selected QSOs from UKIDSS (Maddox+, 2008)
J/ApJ/690/20 : Models of the AGN and BH populations (Shankar+, 2009)
J/ApJ/699/800 : Mass functions of active black holes (Vestergaard+, 2009)
J/MNRAS/405/2302 : Improved redshifts for SDSS QSO spectra (Hewett+, 2010)
J/ApJ/708/137 : Broad-line AGNs in zCOSMOS survey (Merloni+, 2010)
J/MNRAS/410/860 : Redshift dependence of BAL QSOs (Allen+, 2011)
J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011)
J/ApJ/728/23 : GALEX UV-bright high-redshift quasars (Worseck+, 2011)
J/ApJ/753/125 : NIR spectro. follow-up of 60 SDSS-DR7 QSOs (Shen+, 2012)
J/ApJ/764/45 : Luminosity function of BL QSOs. II. (Kelly+, 2013)
J/A+A/568/A9 : 300-2500nm flux calibration ref. spectra (Moehler+, 2014)
J/ApJ/806/128 : Space telescope RM project. I. NGC5548 (De Rosa+, 2015)
J/ApJ/805/96 : SDSS-RM project: vel. dispersions of QSOs (Shen+, 2015)
J/ApJS/227/11 : PS1 z>5.6 quasars follow-up (Banados+, 2016)
J/ApJ/819/24 : z>4.5 QSOs with SDSS and WISE. I. Opt. spe. (Wang+, 2016)
J/MNRAS/465/2120 : Correcting CIV-based virial BH masses (Coatman+, 2017)
J/ApJ/866/133 : Continuum-Hβ light curves of 5 Sy1 (De Rosa+, 2018)
J/ApJ/857/126 : Quasars Probing Quasars. IX. (QPQ9) (Lau+, 2018)
J/ApJ/865/56 : Em. line & R-band continuum LCs of 17 QSOs (Lira+, 2018)
J/ApJ/863/144 : ELQS in SDSS footprint. II. (Schindler+, 2018)
J/ApJ/887/268 : QSOs in South. Hemisphere (QUBRICS) (Calderone+, 2019)
J/ApJ/887/196 : REQUIEM survey. I. Lya halos around QSOs (Farina+, 2019)
J/ApJ/887/38 : SDSS RM Project: CIV lags & LCs; 4yrs of data (Grier+, 2019)
J/MNRAS/488/1035 : AGN UV luminosity function (Kulkarni+, 2019)
J/MNRAS/487/3305 : BL velocity shifts in 1.5<z<7.5 QSOs (Meyer+, 2019)
J/ApJ/871/258 : ELQS in SDSS. III. The ELQS QSO cat. (Schindler+, 2019)
J/ApJ/873/35 : Gemini GNIRS NIR sp. of 50 QSOs at z≳5.7 (Shen+, 2019)
J/ApJ/901/55 : SDSS-RM project: MgII lags; 4yrs (Homayouni+, 2020)
J/ApJ/905/51 : X-SHOOTER/ALMA QSOs at 5.78<z<7.54. I. (Schindler+, 2020)
J/ApJ/915/129 : 13yr of spectrophot. monitored QSOs (Kaspi+, 2021)
J/AJ/162/72 : Random forests method to discover high-z QSOs (Wenzl+, 2021)
J/ApJ/923/262 : NIR spectroscopic obs. of z>6.5 quasars (Yang+, 2021)
J/other/Nat/605.244 : XQR-30 quasars sample (Bischetti+, 2022)
J/ApJS/259/18 : SHELLQs. XVI. New quasars at 5.8<z<7 (Matsuoka+, 2022)
J/A+A/667/A9 : Unveiling warm dense ISM phase in QSOs (Pensabene+, 2022)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 21 A21 --- Name QSO name
23- 32 A10 --- ID Abbreviated identifier
34- 35 I2 h RAh Hour of right ascension (J2000)
37- 38 I2 min RAm Minute of right ascension (J2000)
40- 45 F6.3 s RAs Second of right ascension (J2000)
47 A1 --- DE- Sign of declination (J2000)
48- 49 I2 deg DEd Degree of declination (J2000)
51- 52 I2 arcmin DEm Arcminute of declination (J2000)
54- 58 F5.2 arcsec DEs Arcsecond of declination (J2000)
60- 65 F6.4 --- zSys [5.78/7.6] Redshift
67- 72 F6.4 --- e_zSys [0.0001/0.003] zSys uncertainty
74- 87 A14 --- n_zSys zSys method
89- 92 A4 --- r_zSys zSys reference (1)
94- 98 F5.2 mag Jmag [17.6/22] J-band (AB) magnitude
100- 103 F4.2 mag e_Jmag [0.02/0.2] Uncertainty on the Jmag
105- 110 F6.2 mag M1450 [-29.1/-24.4] 1450Å absolute (AB) magnitude
112- 115 F4.2 mag e_M1450 [0/0.3] Lower uncertainty on M1450
117- 120 F4.2 mag E_M1450 [0/0.2] Upper uncertainty on M1450
122- 129 A8 --- Ref Discovery reference (1)
131- 138 A8 --- Notes Notes
--------------------------------------------------------------------------------
Note (1): References as follows:
B14 = Banados et al. 2014AJ....148...14B 2014AJ....148...14B
B16 = Banados et al. 2016ApJS..227...11B 2016ApJS..227...11B
B18 = Banados et al. 2018Natur.553..473B 2018Natur.553..473B
B19 = Banados et al. 2019ApJ...881L..23B 2019ApJ...881L..23B
C18 = Chehade et al. 2018MNRAS.478.1649C 2018MNRAS.478.1649C
D18 = Decarli et al. 2018ApJ...854...97D 2018ApJ...854...97D
D11 = De Rosa et al. 2011ApJ...739...56D 2011ApJ...739...56D
E20 = Eilers et al. 2020ApJ...900...37E 2020ApJ...900...37E
F00 = Fan et al. 2000AJ....120.1167F 2000AJ....120.1167F
F01 = Fan et al. 2001AJ....122.2833F 2001AJ....122.2833F
F19 = Farina et al. 2019ApJ...887..196F 2019ApJ...887..196F
J08 = Jiang et al. 2008AJ....135.1057J 2008AJ....135.1057J
J15 = Jiang et al. 2015AJ....149..188J 2015AJ....149..188J
J16 = Jiang et al. 2016ApJ...833..222J 2016ApJ...833..222J
M17 = Mazzucchelli et al. 2017ApJ...849...91M 2017ApJ...849...91M
M09 = Mortlock et al. 2009A&A...505...97M 2009A&A...505...97M
M11 = Mortlock et al. 2011Natur.474..616M 2011Natur.474..616M
V13 = Venemans et al. 2013ApJ...779...24V 2013ApJ...779...24V
V15 = Venemans et al. 2015ApJ...801L..11V 2015ApJ...801L..11V
V19 = Venemans et al. 2019ApJ...874L..30V 2019ApJ...874L..30V
V20 = Venemans et al. 2020ApJ...904..130V 2020ApJ...904..130V
W16 = Wang et al. 2016ApJ...819...24W 2016ApJ...819...24W
W17 = Wang et al. 2017ApJ...839...27W 2017ApJ...839...27W
W13 = Wang et al. 2013ApJ...773...44W 2013ApJ...773...44W
W07 = Willott et al. 2007AJ....134.2435W 2007AJ....134.2435W
W10 = Willott et al. 2010AJ....139..906W 2010AJ....139..906W
W15a = Willott et al. 2015ApJ...801..123W 2015ApJ...801..123W
W15b = Wu et al. 2015Natur.518..512W 2015Natur.518..512W
PapI = Schindler et al. 2020ApJ...905...51S 2020ApJ...905...51S
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- ID Quasar abbreviated identifier
12- 13 I2 h RAh Hour of Right Ascension (J2000)
15- 16 I2 min RAm Minute of Right Ascension (J2000)
18- 22 F5.2 s RAs Second of Right Ascension (J2000)
24 A1 --- DE- Sign of the Declination (J2000)
25- 26 I2 deg DEd Degree of Declination (J2000)
28- 29 I2 arcmin DEm Arcminute of Declination (J2000)
31- 34 F4.1 arcsec DEs Arcsecond of Declination (J2000)
36- 41 F6.4 --- zSys [5.8/7.7] Systemic redshift
43- 48 F6.4 --- e_zSys [0.0001/0.05]? Systemic redshift error
50- 60 A11 --- Method Method for systemic redshift
62- 67 F6.2 mag M1450 [-30/-23] Absolute monochromatic magnitude
at 1450Å, (AB) mag
69- 73 I5 km/s FWHMMgII [1280/10126] MgII FWHM (2)(1)
75- 78 I4 km/s e_FWHMMgII [8/8519]? Lower uncertainty (15.9
percentile) on MgII-FWHM (1)(2)
80- 83 I4 km/s E_FWHMMgII [8/8519]? Upper uncertainty (84.1
percentile) on MgII-FWHM (1)(2)
85- 90 F6.3 10+39W L3000 [0.1/29.8] Continuum model luminosity
at 3000Å
92- 96 F5.3 10+39W e_L3000 [0.005/0.8]? Lower uncertainty (15.9
percentile) on L3000
98- 102 F5.3 10+39W E_L3000 [0.005/0.8]? Upper uncertainty (84.1
percentile) on L3000
104- 109 F6.2 10+39W Lbol [0.53/154] Bolometric luminosity
111- 115 F5.2 10+9Msun MBH-S11 [0.04/19.3] VW01 MgII Black hole mass;
Shen+ (2011, J/ApJS/194/45)
117- 120 F4.2 --- LEdd-S11 [0.03/1.8] VW01 MgII Eddington luminosity
ratio; Shen+ (2011, J/ApJS/194/45)
122- 138 A17 --- Ref References (3)
--------------------------------------------------------------------------------
Note (1): FWHM measurements are corrected for instrumental line broadening
introduced by the resolution of the X-SHOOTER spectrograph.
Note (2): For all quasars the iron pseudo-continuum has been fitted using the
Vestergaard & Wilkes (2001ApJS..134....1V 2001ApJS..134....1V) template.
The exceptions are: No iron pseudo continuum has been subtracted in the
estimates from Chehade+ (2018MNRAS.478.1649C 2018MNRAS.478.1649C). Measures from
Wang+ (2021ApJ...908...53W 2021ApJ...908...53W), Andika+ (2020ApJ...903...34A 2020ApJ...903...34A), and
Matsuoka+ (2019ApJ...872L...2M 2019ApJ...872L...2M) has been derived from a combination of the
Vestergaard & Wilkes (2001ApJS..134....1V 2001ApJS..134....1V) and the
Tsuzuki+ (2006ApJ...650...57T 2006ApJ...650...57T) iron templates, while those from
Willott+ (2010AJ....140..546W 2010AJ....140..546W) from the
McLure & Dunlop (2004MNRAS.352.1390M 2004MNRAS.352.1390M) one.
Note (3): References as follows:
Andika2020 = 2020ApJ...903...34A 2020ApJ...903...34A (1 occurence)
Chehade2018 = 2018MNRAS.478.1649C 2018MNRAS.478.1649C (2 occurences)
DeRosa2011 = 2011ApJ...739...56D 2011ApJ...739...56D (1 occurence)
Matsuoka2019 = 2019ApJ...872L...2M 2019ApJ...872L...2M (1 occurence)
Mazzucchelli2017 = 2017ApJ...849...91M 2017ApJ...849...91M (2 occurences)
Onoue2019 = 2019ApJ...880...77O 2019ApJ...880...77O (6 occurences)
Reed2019 = 2019MNRAS.487.1874R 2019MNRAS.487.1874R (2 occurences)
Shen2019 = 2019ApJ...873...35S 2019ApJ...873...35S ; Cat. J/ApJ/873/35 (27 occurences)
WangFeige2021XRay = 2021ApJ...908...53W 2021ApJ...908...53W (1 occurence)
Willott2010BH = 2010AJ....140..546W 2010AJ....140..546W (3 occurences)
Yang2021 = 2021ApJ...923..262Y 2021ApJ...923..262Y ; Cat. J/ApJ/923/262 (36 occurences)
This work = 2022ApJ...941..106F 2022ApJ...941..106F ; Cat. J/ApJ/941/106 (32 occurences)
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Schindler et al. Paper I. 2020ApJ...905...51S 2020ApJ...905...51S Cat. J/ApJ/905/51
(End) Prepared by [AAS], Katia van der Woerd [CDS] 27-Jan-2025