J/ApJ/943/42 Hydrogen-poor superluminous SNe from ZTF Phase I. II. (Chen+, 2023)

The Hydrogen-poor superluminous supernovae from the Zwicky Transient Facility Phase I survey. II. Light-curve modeling and characterization of undulations. Chen Z.H., Yan L., Kangas T., Lunnan R., Sollerman J., Schulze S., Perley D.A., Chen T.-W., Taggart K., Hinds K.R., Gal-Yam A., Wang X.F., De K., Bellm E., Bloom J.S., Dekany R., Graham M., Kasliwal M., Kulkarni S., Laher R., Neill D., Rusholme B. <Astrophys. J., 943, 42 (2023)> =2023ApJ...943...42C 2023ApJ...943...42C
ADC_Keywords: Supernovae; Photometry; Optical; Surveys; Magnetic fields; Radial velocities; Interstellar medium Keywords: Supernovae Abstract: We present analysis of the light curves (LCs) of 77 hydrogen-poor superluminous supernovae (SLSNe I) discovered during the Zwicky Transient Facility Phase I operation. We find that the majority (67%) of the sample can be fit equally well by both magnetar and ejecta-circumstellar medium (CSM) interaction plus 56Ni decay models. This implies that LCs alone cannot unambiguously constrain the physical power sources for an SLSN I. However, 23% of the sample show inverted V-shape, steep-declining LCs or features of long rise and fast post-peak decay, which are better described by the CSM+Ni model. The remaining 10% of the sample favors the magnetar model. Moreover, our analysis shows that the LC undulations are quite common, with a fraction of 18%-44% in our gold sample. Among those strongly undulating events, about 62% of them are found to be CSM-favored, implying that the undulations tend to occur in the CSM-favored events. Undulations show a wide range in energy and duration, with median values (and 1σ errors) being as 1.7%-0.7%+1.5%Erad,total and 28.8-9.1+14.4days, respectively. Our analysis of the undulation timescales suggests that intrinsic temporal variations of the central engine can explain half of the undulating events, while CSM interaction (CSI) can account for the majority of the sample. Finally, all of the well-observed He-rich SLSNe Ib either have strongly undulating LCs or the LCs are much better fit by the CSM+Ni model. These observations imply that their progenitor stars have not had enough time to lose all of the He-envelopes before supernova explosions, and H-poor CSM are likely to present in these events. Description: Our sample contains 77 SLSNe I discovered from 2018-Mar-17 to 2020-Oct-31 by the ZTF survey. This sample covers redshifts of z∼0.06-0.67. The photometry data primarily comes from the ZTF in the g, r, i bands, and also includes additional data from other ground-based facilities (see Paper I, Chen+ 2023, J/ApJ/943/41 for details) and Swift. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 39 107 Spectral velocities for 58 SNe tablea2.dat 154 70 Modeling parameters -------------------------------------------------------------------------------- See also: J/ApJ/827/90 : Spectroscopy of SNe Ib, IIb and Ic (Liu+, 2016) J/ApJ/832/108 : Spectral properties of Type Ic & Ic-bl SNe (Modjaz+, 2016) J/ApJ/845/85 : Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017) J/ApJ/836/25 : Swift UVOT light curves of ASASSN-15lh (Margutti+, 2017) J/ApJ/835/58 : PTF 12dam & iPTF 13dcc follow-up (Vreeswijk+, 2017) J/ApJ/860/100 : LCs of 26 hydrogen-poor superluminous SNe (De Cia+, 2018) J/ApJ/901/61 : LCs of 4 superluminous SNe from the ZTF survey (Lunnan+, 2020) J/A+A/637/A73 : Type IIn supernova photometry (Nyholm+, 2020) J/ApJ/902/L8 : Optical & NIR spectra of ZTF19aawfbtg (SN2019hge) (Yan+, 2020) J/ApJ/933/14 : LC analysis of type I superluminous SNe (Hosseinzadeh+, 2022) J/ApJ/943/41 : Hydrogen-poor SLSNe from ZTF Phase I. I. (Chen+, 2023) Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 -- Name Object name 12- 17 F6.2 d Phase [-76.7/142.5] Phase in the rest frame 19- 22 A4 -- Ion Ionic species 24- 28 I5 km/s Vel [4730/21130] Velocity of absorption lines 30- 34 I5 km/s E_Vel [120/12770] Positive uncertainty on Velocity 36- 39 I4 km/s e_Vel [120/4310] Negative uncertainty on Velocity -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Object name 12- 15 F4.2 10+10T M-Bperp [0.07/5] Magnetar model perpendicular magnetic field 17- 20 F4.2 10+10T E_M-Bperp [0.02/1.1] Upper uncertainty in M-Bperp 22- 25 F4.2 10+10T e_M-Bperp [0.02/1.2] Lower uncertainty in M-Bperp 27- 30 F4.2 ms M-P [0.89/9.1] Magnetar model period 32- 35 F4.2 ms E_M-P [0.17/3.5] Upper uncertainty in M-P 37- 40 F4.2 ms e_M-P [0.1/2] Lower uncertainty in M-P 42- 46 F5.2 solMass M-Mej [1.17/48] Magnetar model ejecta mass 48- 52 F5.2 solMass E_M-Mej [0.29/17] Upper uncertainty in M-Mej 54- 58 F5.2 solMass e_M-Mej [0.2/13] Lower uncertainty in M-Mej 60- 63 F4.2 10+4km/s M-Vej [0.4/1.6] Magnetar model ejecta velocity 65- 68 F4.2 10+4km/s E_M-Vej [0/0.2] Upper uncertainty in M-Vej 70- 73 F4.2 10+4km/s e_M-Vej [0/0.2] Lower uncertainty in M-Vej 75- 79 F5.2 --- M-chi2 [0.54/39.3] Magnetar model reduced χ2 value 81 I1 --- CSM-s [0/2] CSM model density profile value 83- 87 F5.2 solMass CSM-MNi [0/24.4] CSM model Ni mass 89- 93 F5.2 solMass E_CSM-MNi [0.01/11.4] Upper uncertainty in CSM-MNi 95- 98 F4.2 solMass e_CSM-MNi [0/4.1] Lower uncertainty in CSM-MNi 100- 104 F5.2 solMass CSM-MCSM [0.2/29.5] CSM model circumstellar medium mass 106- 109 F4.2 solMass E_CSM-MCSM [0.1/7] Upper uncertainty in CSM-MCSM 111- 115 F5.2 solMass e_CSM-MCSM [0.07/11] Lower uncertainty in CSM-MCSM 117- 121 F5.2 solMass CSM-Mej [0.1/96] CSM model ejecta mass 123- 127 F5.2 solMass E_CSM-Mej [0.02/40] Upper uncertainty in CSM-Mej 129- 133 F5.2 solMass e_CSM-Mej [0.01/24.4] Lower uncertainty in CSM-Mej 135- 138 F4.2 10+4km/s CSM-Vej [0.3/2.3] CSM model ejecta velocity 140- 143 F4.2 10+4km/s E_CSM-Vej [0/0.3] Upper uncertainty in CSM-Vej 145- 148 F4.2 10+4km/s e_CSM-Vej [0/0.3] Lower uncertainty in CSM-Vej 150- 154 F5.2 --- CSM-chi2 [0.39/19] CSM model reduced χ2 value -------------------------------------------------------------------------------- History: From electronic version of the journal References: Chen et al. Paper I. 2023ApJ...943...41C 2023ApJ...943...41C Cat. J/apJ/943/41 Chen et al. Paper II. 2023ApJ...943...42C 2023ApJ...943...42C This catalog
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 06-Dec-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line