J/ApJ/943/42 Hydrogen-poor superluminous SNe from ZTF Phase I. II. (Chen+, 2023)
The Hydrogen-poor superluminous supernovae from the Zwicky Transient Facility
Phase I survey.
II. Light-curve modeling and characterization of undulations.
Chen Z.H., Yan L., Kangas T., Lunnan R., Sollerman J., Schulze S.,
Perley D.A., Chen T.-W., Taggart K., Hinds K.R., Gal-Yam A., Wang X.F.,
De K., Bellm E., Bloom J.S., Dekany R., Graham M., Kasliwal M.,
Kulkarni S., Laher R., Neill D., Rusholme B.
<Astrophys. J., 943, 42 (2023)>
=2023ApJ...943...42C 2023ApJ...943...42C
ADC_Keywords: Supernovae; Photometry; Optical; Surveys; Magnetic fields;
Radial velocities; Interstellar medium
Keywords: Supernovae
Abstract:
We present analysis of the light curves (LCs) of 77 hydrogen-poor
superluminous supernovae (SLSNe I) discovered during the Zwicky
Transient Facility Phase I operation. We find that the majority (67%)
of the sample can be fit equally well by both magnetar and
ejecta-circumstellar medium (CSM) interaction plus 56Ni decay
models. This implies that LCs alone cannot unambiguously constrain the
physical power sources for an SLSN I. However, 23% of the sample show
inverted V-shape, steep-declining LCs or features of long rise and
fast post-peak decay, which are better described by the CSM+Ni model.
The remaining 10% of the sample favors the magnetar model. Moreover,
our analysis shows that the LC undulations are quite common, with a
fraction of 18%-44% in our gold sample. Among those strongly
undulating events, about 62% of them are found to be CSM-favored,
implying that the undulations tend to occur in the CSM-favored events.
Undulations show a wide range in energy and duration, with median
values (and 1σ errors) being as 1.7%-0.7%+1.5%Erad,total
and 28.8-9.1+14.4days, respectively. Our analysis of the
undulation timescales suggests that intrinsic temporal variations of
the central engine can explain half of the undulating events, while
CSM interaction (CSI) can account for the majority of the sample.
Finally, all of the well-observed He-rich SLSNe Ib either have
strongly undulating LCs or the LCs are much better fit by the CSM+Ni
model. These observations imply that their progenitor stars have not
had enough time to lose all of the He-envelopes before supernova
explosions, and H-poor CSM are likely to present in these events.
Description:
Our sample contains 77 SLSNe I discovered from 2018-Mar-17 to
2020-Oct-31 by the ZTF survey. This sample covers redshifts of
z∼0.06-0.67. The photometry data primarily comes from the ZTF in the
g, r, i bands, and also includes additional data from other
ground-based facilities (see Paper I, Chen+ 2023, J/ApJ/943/41 for
details) and Swift.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea1.dat 39 107 Spectral velocities for 58 SNe
tablea2.dat 154 70 Modeling parameters
--------------------------------------------------------------------------------
See also:
J/ApJ/827/90 : Spectroscopy of SNe Ib, IIb and Ic (Liu+, 2016)
J/ApJ/832/108 : Spectral properties of Type Ic & Ic-bl SNe (Modjaz+, 2016)
J/ApJ/845/85 : Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017)
J/ApJ/836/25 : Swift UVOT light curves of ASASSN-15lh (Margutti+, 2017)
J/ApJ/835/58 : PTF 12dam & iPTF 13dcc follow-up (Vreeswijk+, 2017)
J/ApJ/860/100 : LCs of 26 hydrogen-poor superluminous SNe (De Cia+, 2018)
J/ApJ/901/61 : LCs of 4 superluminous SNe from the ZTF survey (Lunnan+, 2020)
J/A+A/637/A73 : Type IIn supernova photometry (Nyholm+, 2020)
J/ApJ/902/L8 : Optical & NIR spectra of ZTF19aawfbtg (SN2019hge) (Yan+, 2020)
J/ApJ/933/14 : LC analysis of type I superluminous SNe (Hosseinzadeh+, 2022)
J/ApJ/943/41 : Hydrogen-poor SLSNe from ZTF Phase I. I. (Chen+, 2023)
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 -- Name Object name
12- 17 F6.2 d Phase [-76.7/142.5] Phase in the rest frame
19- 22 A4 -- Ion Ionic species
24- 28 I5 km/s Vel [4730/21130] Velocity of absorption lines
30- 34 I5 km/s E_Vel [120/12770] Positive uncertainty on Velocity
36- 39 I4 km/s e_Vel [120/4310] Negative uncertainty on Velocity
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Name Object name
12- 15 F4.2 10+10T M-Bperp [0.07/5] Magnetar model perpendicular
magnetic field
17- 20 F4.2 10+10T E_M-Bperp [0.02/1.1] Upper uncertainty in M-Bperp
22- 25 F4.2 10+10T e_M-Bperp [0.02/1.2] Lower uncertainty in M-Bperp
27- 30 F4.2 ms M-P [0.89/9.1] Magnetar model period
32- 35 F4.2 ms E_M-P [0.17/3.5] Upper uncertainty in M-P
37- 40 F4.2 ms e_M-P [0.1/2] Lower uncertainty in M-P
42- 46 F5.2 solMass M-Mej [1.17/48] Magnetar model ejecta mass
48- 52 F5.2 solMass E_M-Mej [0.29/17] Upper uncertainty in M-Mej
54- 58 F5.2 solMass e_M-Mej [0.2/13] Lower uncertainty in M-Mej
60- 63 F4.2 10+4km/s M-Vej [0.4/1.6] Magnetar model ejecta velocity
65- 68 F4.2 10+4km/s E_M-Vej [0/0.2] Upper uncertainty in M-Vej
70- 73 F4.2 10+4km/s e_M-Vej [0/0.2] Lower uncertainty in M-Vej
75- 79 F5.2 --- M-chi2 [0.54/39.3] Magnetar model reduced
χ2 value
81 I1 --- CSM-s [0/2] CSM model density profile value
83- 87 F5.2 solMass CSM-MNi [0/24.4] CSM model Ni mass
89- 93 F5.2 solMass E_CSM-MNi [0.01/11.4] Upper uncertainty in CSM-MNi
95- 98 F4.2 solMass e_CSM-MNi [0/4.1] Lower uncertainty in CSM-MNi
100- 104 F5.2 solMass CSM-MCSM [0.2/29.5] CSM model circumstellar medium
mass
106- 109 F4.2 solMass E_CSM-MCSM [0.1/7] Upper uncertainty in CSM-MCSM
111- 115 F5.2 solMass e_CSM-MCSM [0.07/11] Lower uncertainty in CSM-MCSM
117- 121 F5.2 solMass CSM-Mej [0.1/96] CSM model ejecta mass
123- 127 F5.2 solMass E_CSM-Mej [0.02/40] Upper uncertainty in CSM-Mej
129- 133 F5.2 solMass e_CSM-Mej [0.01/24.4] Lower uncertainty in CSM-Mej
135- 138 F4.2 10+4km/s CSM-Vej [0.3/2.3] CSM model ejecta velocity
140- 143 F4.2 10+4km/s E_CSM-Vej [0/0.3] Upper uncertainty in CSM-Vej
145- 148 F4.2 10+4km/s e_CSM-Vej [0/0.3] Lower uncertainty in CSM-Vej
150- 154 F5.2 --- CSM-chi2 [0.39/19] CSM model reduced χ2 value
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Chen et al. Paper I. 2023ApJ...943...41C 2023ApJ...943...41C Cat. J/apJ/943/41
Chen et al. Paper II. 2023ApJ...943...42C 2023ApJ...943...42C This catalog
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 06-Dec-2024