J/ApJS/101/117    UBVRIJHKLMNQ photometry in Taurus-Auriga (Kenyon+ 1995)

Pre-main-sequence evolution in the Taurus-Auriga molecular cloud Kenyon S.J., Hartmann L. <Astrophys. J. Suppl. Ser. 101, 117 (1995)> =1995ApJS..101..117K 1995ApJS..101..117K
ADC_Keywords: Stars, pre-main sequence ; Photometry Keywords: infrared: stars - ISM: clouds - stars: evolution - stars: luminosity function, mass function - stars: pre-main-sequence Abstract: This paper analyzes optical and infrared photometry of pre-main- sequence stars in the Taurus-Auriga molecular cloud. More than half of the stars in our sample have excess near-infrared emission. The near-infrared excesses correlate very well with other measures of activity, such as Halpha emission, ultraviolet excess emission, millimeter continuum emission, and the presence of reflection nebulae and molecular outflows. The infrared colors and the ratio of far-infrared to bolometric luminosity display a smooth progression from the most deeply embedded protostars to optically visible T Tauri stars. Infalling envelope models account for the colors of protostars; simple disk models similarly reproduce the colors of many T Tauri stars. Both the stellar birth line and a 10^5yr isochrone provide a reasonable upper envelope to the luminosity distribution of optically visible stars in the H-R diagram. Only a few stars in the cloud have apparent ages exceeding 2-3x10^6yr, as derived from detailed stellar evolution calculations. The distribution of stars in the H-R diagram indicates that the cloud has formed stars at a roughly constant rate for the past 1-2x10^6yr. Analyses of the J- and K-luminosity functions support this conclusion. Within the uncertainties, the observed mass distribution for optically visible stars agrees with a Miller-Scalo initial mass function. Source statistics imply a lifetime of 1-2x10^5yr for the typical protostar in Taurus-Auriga. There is no evidence, however, that these sources lie on the stellar birth line. Indeed, the protostellar luminosity function is essentially identical to the luminosity function derived for optically visible T Tauri stars in the cloud. These results provide some support for the evolutionary sequence -- embedded protostar -> T Tauri star with a circumstellar disk -> T Tauri star without a circumstellar disk -- currently envisioned in standard models of low-mass star formation. Source statistics and infrared color-color diagrams demonstrate that pre-main-sequence stars develop bluer colors and display less evidence for circumstellar material with time. The data show little evidence, however, for the luminosity evolution expected along the proposed evolutionary sequence. Time-dependent accretion during the infall phase may account for the low luminosity of Taurus-Auriga protostars; this hypothesis requires more tests. Description: Tables A1-A2 list average V and K magnitudes and broadband optical and near-infrared colors for T Tauri stars in the Taurus-Auriga cloud. The quoted errors are 1 sigma dispersions from the average values for objects with 2 or more measurements at V, K, or the appropriate color. For convenience, the authors quote dispersions of 0.00 for objects with only a single measurement. The last columns of Tables A1-A2 list the number of V, K, and N measurements used to compute the average values. The number of data points used to determine average colors is usually close to the number of V or K measurements. Table A3 lists IRAS colors for the Taurus-Auriga sample. For each IRAS source, the authors compiled fluxes from version 2 of the Point Source Catalog, IRAS ADDSCANs, and the IRAS Serendipitous Survey Catalog and averaged fluxes for sources appearing in 2 or 3 catalogs (see section 2 of the printed paper). The authors adopted flux zero points of Fnu(12um)=28.3Jy, Fnu(25um)=6.73Jy, Fnu(60um)=1.19Jy, and Fnu(100um)=0.43Jy to compute IRAS magnitudes and then derived colors using average K magnitudes from Table A2. In some cases, two or more pre-main-sequence stars fall in a typical IRAS beam. The authors summed the K flux of the individual objects to compute a combined K magnitude and color for these IRAS sources. These IRAS colors assume no color correction for the IRAS flux. Table A4 lists various quantities derived from published spectra and the photometry in Tables A1-A3. Infrared colors and the ratio of far-IR to bolometric luminosity set the spectral energy distribution class, SED. The optical spectral type usually was taken from the literature (Herbig & Bell (1988LicOB1111....1H 1988LicOB1111....1H)) or the authors own work. The effective temperature, Teff, is based on compilations by Schmidt-Kaler (1982) and Straizys (1992). The authors estimated optical extinctions, A_V, from comparisons between the observed optical or infrared colors and colors for normal main sequence stars in Table A5. The authors adopted Bessell & Brett's (1988PASP..100.1134B 1988PASP..100.1134B) extinction curve to derive A_V from the optical color excess and to derive the extinction at 1.25um, A_J. The stellar luminosity, L_J, follows from the observed J magnitude, the extinction, and an appropriate bolometric correction from Table A5 for a distance of d=140pc. The 7-135um luminosity, L_FIR, and the bolometric luminosity, L_b, are both integrations over the reddening-corrected flux distribution. The 7-135um luminosity is quoted as an upper limit for sources not detected by IRAS. Lower limits on L_b are quoted for sources with incomplete photometry. Table A5 lists adopted broadband colors for main sequence stars. For the optical colors, this list is based on data compiled by Johnson (1966, ARA&A, 4, 193; U-B, B-V, V-R_J, and V-J_C), Schmidt-Kaler ((1982) ; U-B and B-V), and Bessell ((1990A&AS...83..357B 1990A&AS...83..357B) and 1990, PASP, 102, 1181; U-B, B-V, V-R_C, and V-I_C). Bessell & Brett (1988PASP..100.1134B 1988PASP..100.1134B) contains the most comprehensive list of main sequence IR colors. The authors supplemented their Table II with colors from Johnson (1966, ARA&A, 4, 193) for early-type main sequence stars. Johnson (1966, ARA&A, 4, 193) contains the best list of K-N colors for main sequence stars. To complement these data, the authors compiled V-[12] colors using stars selected from the Third Catalog of Nearby Stars (Gliese & Jahreiss 1979A&AS...38..423G 1979A&AS...38..423G). The authors extracted 12um fluxes from version 2 of the IRAS Point Source Catalog, color-corrected the fluxes assuming a color temperature equal to the stellar effective temperature, and computed a V-[12] color assuming a 12um zero point of 28.3Jy. The tabulated color is the median color. The tabulated visual bolometric corrections, BCV=Mbol-M_V, were used to derive absolute J luminosities, L_J. The authors adopted BC_V from Schmidt-Kaler (1982; also Straizys 1992) for stars with spectral types earlier than K6; the authors integrated the energy distribution over wavelength to derive BC_V for for later spectral types. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 73 287 Mean optical photometry tablea2.dat 98 289 Mean near-IR photometry tablea3.dat 66 158 Far-IR colors tablea4.dat 76 190 Luminosities and extinctions tablea5.dat 94 55 Colors for main-sequence stars table.tex 273 1143 AASTeX version of tables A1-A5 -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- Name Star name 16- 20 F5.2 mag Vmag []? Average V magnitude 22- 25 F4.2 mag e_Vmag *[]? V error 27- 31 F5.2 mag U-B []? Average U-B color 33- 36 F4.2 mag e_U-B *[]? U-B error 38- 42 F5.2 mag B-V []? Average B-V color 44- 47 F4.2 mag e_B-V *[]? B-V error 49- 53 F5.2 mag V-R []? Average V-R color 55- 58 F4.2 mag e_V-R *[]? V-R error 60- 64 F5.2 mag R-I []? Average R-I color 66- 69 F4.2 mag e_R-I *[]? R-I error 71- 73 I3 --- o_Vmag *[]?=0 Number of V measurements for average -------------------------------------------------------------------------------- Note on e_Vmag, e_U-B, e_B-V, e_V-R, e_R-I: The quoted errors are 1 sigma dispersions from the average values for objects with 2 or more measurements. For convenience the dispersions are 0.00 for objects with only a single measurement (N_V=1). Note on o_Vmag: The number of data points used to determine average colors is usually close to the number of V measurements -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- Name Star name 16- 20 F5.2 mag Kmag []? Average K magnitude 22- 25 F4.2 mag e_Kmag *[]? K error 27- 31 F5.2 mag J-K []? Average J-K color 33- 36 F4.2 mag e_J-K *[]? J-K error 38- 42 F5.2 mag H-K []? Average H-K color 44- 47 F4.2 mag e_H-K *[]? H-K error 49- 53 F5.2 mag K-L []? Average K-L color 55- 58 F4.2 mag e_K-L *[]? K-L error 60- 64 F5.2 mag K-M []? Average K-M color 66- 69 F4.2 mag e_K-M *[]? K-M error 71- 75 F5.2 mag K-N []? Average K-N color 77- 80 F4.2 mag e_K-N *[]? K-N error 82- 86 F5.2 mag K-Q []? Average K-Q color 88- 91 F4.2 mag e_K-Q *[]? K-Q error 93- 95 I3 --- o_Kmag *[]?=0 Number of K measurements for average 97- 98 I2 --- o_Nmag []?=0 Number of N measurements for average -------------------------------------------------------------------------------- Note on e_Kmag, e_J-K, e_H-K, e_K-L, e_K-M, e_K-N, e_K-Q: The quoted errors are 1 sigma dispersions from the average values for objects with 2 or more measurements. For convenience the dispersions are 0.00 for objects with only a single measurement (N_V=1). Note on o_Kmag: The number of data points used to determine average colors is usually close to the number of K measurements -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 38 A38 --- Name Star names 40- 45 F6.2 mag K-12 []? K-12 um color 47- 52 F6.2 mag K-25 []? K-25 um color 54- 59 F6.2 mag K-60 []? K-60 um color 61- 66 F6.2 mag K-100 []? K-100 um color -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- Name Star name 15- 18 A4 --- SED Spectral energy distribution class 20- 24 A5 --- Sp Spectral type 26- 30 I5 K Teff []? Effective temperature 32- 36 F5.2 mag AV []? Optical extinction 38- 42 F5.2 mag AJ []? Extinction at 1.25 um 44- 48 F5.2 solLum LJ *[]? Stellar luminosity 50 A1 --- l_LFIR *[< ] L_FIR limiting character 51- 55 F5.2 solLum LFIR []? 7-135 um luminosity 57 A1 --- l_Lb *[> ] L_b limiting character 58- 62 F5.2 solLum Lb []? Bolometric luminosity 64 A1 --- l_LJ/Lb [< ] LJ/Lb limiting character 65- 69 F5.2 --- LJ/Lb []? LJ/Lb ratio 71 A1 --- l_LFIR/Lb [< ] LFIR/Lb limiting character 72- 76 F5.2 --- LFIR/Lb []? LFIR/Lb ratio -------------------------------------------------------------------------------- Note on LJ: The stellar luminosity, LJ, follows the J magnitude, the extinction and an appropriate bolometric correction from Table A5 for a distance of d=140pc. Note on l_LFIR: Luminosity is an upper limit, "<", for sources not detected by IRAS. Note on l_Lb: Luminosity is a lower limit, ">", for sources with an incomplete photometry. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Sp Spectral type 6- 10 I5 K Teff Effective temperature 12- 16 F5.2 mag BC Bolometric correction 18- 22 F5.2 mag U-V U-V color 24- 28 F5.2 mag B-V B-V color 30- 34 F5.2 mag V-Rc V-R(Cousins) color 36- 40 F5.2 mag V-Rj V-R(Johnson) color 42- 46 F5.2 mag V-Ic V-I(Cousins) color 48- 52 F5.2 mag V-Ij V-I(Johnson) color 54- 58 F5.2 mag V-J V-J color 60- 64 F5.2 mag V-H V-H color 66- 70 F5.2 mag V-K V-K color 72- 76 F5.2 mag V-L V-L color 78- 82 F5.2 mag V-M []? V-M color 84- 88 F5.2 mag V-N []? V-N color 90- 94 F5.2 mag V-12 []? V-12 um color -------------------------------------------------------------------------------- References: Bessell, M. S. 1990a, A&AS, 83, 357 =1990A+AS...83..357B 1990A+AS...83..357B Bessell, M. S. 1990b, PASP, 102, 1181 Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134 =1988PASP..100.1134B 1988PASP..100.1134B Gliese, W., & Jahreiss, H. 1979, A&AS, 38, 423 =1979A&AS...38..423G 1979A&AS...38..423G Herbig, G. H., & Bell, K. R. 1988, Lick Obs. Bull., No. 1111 =1988LicOB1111....1H 1988LicOB1111....1H Johnson, H. L. 1966, ARA&A, 4, 193 Schmidt-Kaler, Th. 1982, in Landolt-Bornstein Tables, Springer, p. 454 Straizys, V. 1992, Multicolor Stellar Photometry, Tucson, Pachart Origin: AAS CD-ROM series, Volume 5, 1995 Lee Brotzman [ADS] 06-Nov-95
(End) [CDS] 02-Feb-1996
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line